《机器人自动化:建模、仿真与控制》一一2.1向量场的概念

简介: 本节书摘来自华章出版社《大数据分析原理与实践》一 书中的第2章,第2.1节,作者:[法]吕克·若兰(Luc Jaulin) ,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.1向量场的概念
下面提出向量场的概念,同时展示它对更好地理解系统的不同行为是很有帮助的。为了获得相关主题的更多细节,建议读者阅读Khalil的著作 [KHA 02]。向量场是一个从Rn到Rn的连续函数f,当n=2时,可以用图形来表示函数f向量场。例如,在图21中绘制了与线性函数相关的向量场:
image

为了画出这张图,我们从初始集中取出一组向量,并给它加上网格,然后以每一个网格向量x为原点画出其图像向量f(x)。
image

图21与线性系统相关的向量场
image

可以用以下MATLAB代码生成这个向量场:

该程序也可以在文件field_syslinm中找到,从图中可看到这个线性系统的特征空间(虚线),也可以看到一个特征值是正的,而另一个是负的。这可以通过分析下面给出的线性系统矩阵得到验证:
image

它的特征值是2和-2,相应的特征向量为:
image

要注意的是,图中的向量x并不是一个特征向量,因为x和f(x)并不在同一条直线上。然而,所有特征子空间的向量(在图中以虚线表示)都是特征向量。沿着负特征值的特征子空间,场向量趋向于零点,相反,沿着正特征值的特征子空间,场向量趋向于无穷大。
对于一个自主系统(即没有输入的系统),其演化过程由方程x·(t)=f(x(t))给出。当f是一个从R2到R2的函数时,可通过画出与f相关的向量场来得到f的图形表示。得到的图形可以让我们更好地理解系统的行为

相关文章
|
2月前
|
运维 算法 机器人
阿里云AnalyticDB具身智能方案:破解机器人仿真数据、算力与运维之困
本文将介绍阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL推出的全托管云上仿真解决方案,方案采用云原生架构,为开发者提供从开发环境、仿真计算到数据管理的全链路支持。
|
2月前
|
传感器 算法 安全
机器人路径规划和避障算法matlab仿真,分别对比贪婪搜索,最安全距离,RPM以及RRT四种算法
本程序基于MATLAB 2022A实现机器人路径规划与避障仿真,对比贪婪搜索、最安全距离、RPM和RRT四种算法。通过地图模拟环境,输出各算法的路径规划结果,展示其在避障性能与路径优化方面的差异。代码包含核心路径搜索逻辑,并附有测试运行图示,适用于机器人路径规划研究与教学演示。
295 64
|
8月前
|
机器学习/深度学习 算法 机器人
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
483 85
|
2月前
|
机器人 API
使用OOS实现RAM权限审批流授权及自动化撤销授权的概念验证
本方案通过阿里云OOS与ROS联动,实现RAM账户授权自动化。用户申请后由审批人确认,系统自动授予指定策略,并在预设时间后自动撤销权限,提升安全性与管理效率。
|
3月前
|
机器学习/深度学习 算法 数据可视化
基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真
本内容展示了基于Q-learning算法的机器人迷宫路径搜索仿真及其实现过程。通过Matlab2022a进行仿真,结果以图形形式呈现,无水印(附图1-4)。算法理论部分介绍了Q-learning的核心概念,包括智能体、环境、状态、动作和奖励,以及Q表的构建与更新方法。具体实现中,将迷宫抽象为二维网格世界,定义起点和终点,利用Q-learning训练机器人找到最优路径。核心程序代码实现了多轮训练、累计奖励值与Q值的可视化,并展示了机器人从起点到终点的路径规划过程。
115 0
|
6月前
|
机器学习/深度学习 算法 机器人
基于Qlearning强化学习的机器人路线规划matlab仿真
本内容展示了基于Q-learning强化学习算法的路径规划研究,包括MATLAB仿真效果、理论知识及核心代码。通过训练与测试,智能体在离散化网格环境中学习最优策略以规避障碍并到达目标。代码实现中采用epsilon-贪婪策略平衡探索与利用,并针对紧急情况设计特殊动作逻辑(如后退)。最终,Q-table收敛后可生成从起点到终点的最优路径,为机器人导航提供有效解决方案。
203 20
|
6月前
|
机器人 数据安全/隐私保护
基于模糊PID控制器的puma560机器人控制系统的simulink建模与仿真
本课题研究基于模糊PID控制器的PUMA 560机器人控制系统建模与仿真,对比传统PID控制器性能。通过Simulink实现系统建模,分析两种控制器的误差表现。模糊PID结合了PID的线性控制优势与模糊逻辑的灵活性,提升动态性能和抗干扰能力。以PUMA 560机器人为例,其运动学和动力学模型为基础,设计针对各关节的模糊PID控制器,包括模糊化、规则制定、推理及去模糊化等步骤,最终实现更优的控制效果。
|
8月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
299 68
|
6月前
|
算法 机器人 数据安全/隐私保护
四自由度SCARA机器人的运动学和动力学matlab建模与仿真
本课题深入研究SCARA机器人系统,提出其动力学与运动学模型,并基于MATLAB Robotics Toolbox建立四自由度SCARA机器人仿真对象。通过理论结合仿真实验,实现了运动学正解、逆解及轨迹规划等功能,完成系统实验和算法验证。SCARA机器人以其平面关节结构实现快速定位与装配,在自动生产线中广泛应用,尤其在电子和汽车行业表现优异。使用D-H参数法进行结构建模,推导末端执行器的位姿,建立了机器人的运动学方程。
|
6月前
|
机器人 数据安全/隐私保护
基于PID控制器的六自由度串联机器人控制系统的simulink建模与仿真
本课题基于MATLAB2022a的Simulink环境,对六自由度串联机器人控制系统进行建模与仿真,采用PID控制器实现关节的位置、速度或力矩控制。PID控制器通过比例、积分、微分三种策略有效减小系统误差,提高响应速度和稳定性。仿真结果显示系统运行良好,无水印。尽管PID控制简单实用,但在复杂动力学环境下,常结合其他控制策略以增强鲁棒性。

热门文章

最新文章