C++编程规范之1:在高警告级别干净利落地进行编译

简介:


原则:

高度重视警告:使用编译器的最高警告级别。应该要求构建是干净利落的(没有警告)。理解所有的警告。通过修改代码而不是降低警告级别来排除警告。

解释:

编译器是你的朋友。如果它对某个构造发出警告,一般表明代码中存有潜在的问题。

成功的构建应该是无声无息的(没有警告的)。如果不是这样,你很快就会养成不仔细查看输出的习惯,从而漏过真正的问题。

排除警告的正确做法是:(1)把它弄清楚;(2)改写代码以排除警告,并使代码阅读者和编译器都能更加清楚,代码是按编写者的意图执行的。

即使程序一开始似乎能够正确运行,也还是要这样做。即使你能够肯定警告是良性的,仍然要这样做。因为良性警告的后面可能隐藏着未来指向真正危险的警告。

示例:

1.             第三方头文件。

无法修改库头文件可能包含引起警告(可能是良性的)的构造。如果这样,可以用自己的包含头文件的版本将次文件包装起来,并有选择的为该作用域关闭烦人的警告,然后在真个项目的其他地方包含此包装文件。

2.             未使用函数参数。

检查一下,确认确实不需要使用该函数参数(比如,这可能是一个为了未来扩展而设的占位符,或者是代码没有使用的标准化函数签名中的一个必需部分)。如果确实不需要,那直接删除函数参数名就行了。

	//。。。。在一个用户定义的allocator中未使用hint。。。。。
	//警告:unused parameter 'localityHint'
	pointer allocate(size_type numObjects,const void *localityHint = 0)
	{
		return static_case<pointer>(mallocShared(numObjects *sizeof(T)));
	}
	
	//消除了警告的新版本
	pointer allocate(size_type numObjects,const void * /*localityHint*/ = 0)
	{
		return static_case<pointer>(mallocShared(numObjects *sizeof(T)));
	}


3.             定义了从未使用的变量

检查一下,确认并不是真正要引用该变量。如果确实不需要,经常可以通过插入一个本身的求职表达式,使编译器不再报警。

	//警告:variable 'lock' is defined but never used
	void Fun()
	{
		Lock lock;
		//......
	}

	//可能消除了警告的新版本
	void Fun()
	{
		Lock lock;
		lock;//这一句是关键
		//......
	}


4.             变量使用前可能未经初始化

需要初始化变量

5.             遗漏了return语句

有时候编译器会要求每个分支都有return语句,即使控制流可能永远也不会到达函数的结尾。这可能是一件好事,因为有时候你仅仅是认为控制不会运行到结尾。例如,没有default情况的switch语句不太适应变化,应该加上执行assert(false) 的default情况。

	//警告:missing "return"
	int Fun(color c)
	{
		switch(c)
		{
		case Red:
			return 2;
		case Green:
			return 0;
		case Blue:
		case Black:
			return 1;
		}
	}

	//消除了警告的版本
	int Fun(color c)
	{
		switch(c)
		{
		case Red:
			return 2;
		case Green:
			return 0;
		case Blue:
		case Black:
			return 1;
		default:
			assert(!"should never get here!")//!"string"的求值结果为false
				return -1;
		}
	}


6.             有符号/无符号数不匹配

通常没有必要对符号不同的整数进行比较和赋值。应该改变所操作的变量的类型,从而使类型匹配。最坏的情况下,要插入一个显示的强制转换。

    7.有时候编译器可能会发出烦人的甚至虚假的警告(即纯属噪声的警告),但是又没有提供消除的方法,这时忙于修改代码解决这个警告可能是劳而无功或者事倍功半的。如果遇到了这种罕见的情形,作为团队决定,应该避免对纯粹无益的警告再做无用功:单独禁用这个警告,但是要尽可能在局部禁用,并且编写一个清晰的注释,说明为什么必须禁用。

 

 

相关文章
|
3月前
|
存储 算法 安全
c++模板进阶操作——非类型模板参数、模板的特化以及模板的分离编译
在 C++ 中,仿函数(Functor)是指重载了函数调用运算符()的对象。仿函数可以像普通函数一样被调用,但它们实际上是对象,可以携带状态并具有更多功能。与普通函数相比,仿函数具有更强的灵活性和可扩展性。仿函数通常通过定义一个包含operator()的类来实现。public:// 重载函数调用运算符Add add;// 创建 Add 类的对象// 使用仿函数return 0;
122 0
|
8月前
|
自然语言处理 编译器 C语言
为什么C/C++编译腰要先完成汇编
C/C++ 编译过程中先生成汇编语言是历史、技术和实践的共同选择。历史上,汇编语言作为成熟的中间表示方式,简化了工具链;技术上,分阶段编译更高效,汇编便于调试和移植;实践中,保留汇编阶段降低了复杂度,增强了可移植性和优化能力。即使在现代编译器中,汇编仍作为重要桥梁,帮助开发者更好地理解和优化代码。
126 25
为什么C/C++编译腰要先完成汇编
|
10月前
|
自然语言处理 编译器 Linux
告别头文件,编译效率提升 42%!C++ Modules 实战解析 | 干货推荐
本文中,阿里云智能集团开发工程师李泽政以 Alinux 为操作环境,讲解模块相比传统头文件有哪些优势,并通过若干个例子,学习如何组织一个 C++ 模块工程并使用模块封装第三方库或是改造现有的项目。
754 56
|
10月前
|
自然语言处理 编译器 Linux
|
11月前
|
存储 程序员 编译器
简述 C、C++程序编译的内存分配情况
在C和C++程序编译过程中,内存被划分为几个区域进行分配:代码区存储常量和执行指令;全局/静态变量区存放全局变量及静态变量;栈区管理函数参数、局部变量等;堆区则用于动态分配内存,由程序员控制释放,共同支撑着程序运行时的数据存储与处理需求。
526 22
|
11月前
|
Linux 编译器 C语言
Linux c/c++之多文档编译
这篇文章介绍了在Linux操作系统下使用gcc编译器进行C/C++多文件编译的方法和步骤。
140 0
Linux c/c++之多文档编译
|
11月前
|
算法 编译器 C++
【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
229 2
|
7月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
3月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
92 0
|
3月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
169 0