锦程物流item_search - 根据关键词获取列表接口对接全攻略:从入门到精通

简介: 锦程物流`item_search`接口是开放平台提供的智能订单搜索服务,支持关键词模糊匹配(订单号/运单号/联系人)、多条件筛选(状态/时间/产品)、分页排序及字段定制,兼容Python/Java/PHP,含签名验签、缓存优化与异常处理机制。(239字)

一、接口概览
1.1 接口简介
item_search接口是锦程物流开放平台提供的物流订单搜索接口,支持根据多种条件查询物流订单列表,实现订单的模糊搜索、状态筛选、时间范围查询等复杂检索功能。
1.2 核心功能
✅ 关键词搜索:订单号、运单号、收发货人姓名/电话模糊匹配
✅ 多条件筛选:按状态、时间、物流产品等维度筛选
✅ 分页查询:支持大数据量的分页加载
✅ 排序功能:支持按创建时间、更新时间等字段排序
✅ 字段选择:可指定返回字段,优化网络传输
二、准备工作
2.1 环境准备

Python环境

pip install requests python-dotenv

Java环境(Maven)


com.squareup.okhttp3
okhttp
4.10.0

PHP环境

composer require guzzlehttp/guzzle
2.2 配置管理

config.py

import os
from dotenv import load_dotenv

load_dotenv()

class Config:

# API配置
JC_APP_KEY = os.getenv('JC_APP_KEY', '')
JC_APP_SECRET = os.getenv('JC_APP_SECRET', '')
JC_API_ENDPOINT = os.getenv('JC_API_ENDPOINT', 
    'https://sandbox-api.jc56.com'  # 默认沙箱环境
)

# 业务配置
DEFAULT_PAGE_SIZE = 20
MAX_PAGE_SIZE = 100
REQUEST_TIMEOUT = 30

三、接口详解
3.1 接口地址
POST /v1/item/search
3.2 请求参数详解
公共参数
参数名

类型

必填

说明

示例

app_key

string

应用标识

jc_app_2024

timestamp

string

请求时间戳

2026-02-01 10:00:00

sign

string

请求签名

详见签名算法

sign_method

string

签名方法

md5

format

string

返回格式

json(默认)

version

string

API版本

1.0
业务参数
参数名

类型

必填

说明

示例

keyword

string

搜索关键词

JC20260201

order_no

string

精确订单号

JC202602010001

waybill_no

string

运单号

SF123456789

shipper_name

string

发货人姓名

张三

shipper_phone

string

发货人电话

13800138000

consignee_name

string

收货人姓名

李四

consignee_phone

string

收货人电话

13900139000

status

string

订单状态

CREATED, PICKED_UP, IN_TRANSIT, DELIVERED

start_time

string

开始时间

2026-01-01 00:00:00

end_time

string

结束时间

2026-02-01 23:59:59

product_code

string

产品编码

JC_EXPRESS

page_no

int

页码

1(默认)

page_size

int

每页条数

20(默认)

sort_field

string

排序字段

create_time, update_time

sort_order

string

排序方向

desc(默认), asc

fields

string

返回字段

order_no,status,create_time
3.3 签名算法
import hashlib
from typing import Dict, Any

def generate_sign(params: Dict[str, Any], app_secret: str) -> str:
"""
生成API请求签名

Args:
    params: 请求参数字典
    app_secret: 应用密钥

Returns:
    32位大写MD5签名
"""
# 1. 过滤空值和sign参数
filtered_params = {
    k: v for k, v in params.items() 
    if v is not None and k != 'sign'
}

# 2. 按键名ASCII升序排序
sorted_keys = sorted(filtered_params.keys())

# 3. 拼接键值对
sign_str = ''
for key in sorted_keys:
    # 处理数组和对象类型参数
    if isinstance(filtered_params[key], (list, dict)):
        value = str(filtered_params[key])
    else:
        value = str(filtered_params[key])
    sign_str += f"{key}{value}"

# 4. 拼接app_secret
sign_str += app_secret

# 5. 计算MD5并转为大写
md5_hash = hashlib.md5()
md5_hash.update(sign_str.encode('utf-8'))
return md5_hash.hexdigest().upper()

测试用例

test_params = {
"app_key": "test_app",
"timestamp": "2026-02-01 10:00:00",
"keyword": "测试",
"page_no": 1,
"page_size": 20
}
app_secret = "test_secret"
signature = generate_sign(test_params, app_secret)
print(f"生成的签名: {signature}")
四、完整代码实现
4.1 Python完整实现
import requests
import json
import hashlib
import time
from typing import Dict, Any, List, Optional
from datetime import datetime
from urllib.parse import urljoin

class JCLogisticsSearchAPI:
"""锦程物流搜索API客户端"""

def __init__(self, app_key: str, app_secret: str, sandbox: bool = True):
    """
    初始化API客户端

    Args:
        app_key: 应用密钥
        app_secret: 应用密钥
        sandbox: 是否使用沙箱环境
    """
    self.app_key = app_key
    self.app_secret = app_secret
    self.base_url = "https://sandbox-api.jc56.com" if sandbox else "https://api.jc56.com"
    self.session = requests.Session()
    self.session.headers.update({
        "User-Agent": "JCLogistics-Search-Client/1.0",
        "Accept": "application/json",
        "Content-Type": "application/json; charset=utf-8"
    })

def _generate_timestamp(self) -> str:
    """生成标准格式时间戳"""
    return datetime.now().strftime("%Y-%m-%d %H:%M:%S")

def _generate_sign(self, params: Dict[str, Any]) -> str:
    """生成请求签名"""
    # 过滤空值和sign参数
    filtered_params = {
        k: v for k, v in params.items() 
        if v is not None and k != 'sign'
    }

    # 排序并拼接
    sorted_keys = sorted(filtered_params.keys())
    sign_str = ''
    for key in sorted_keys:
        if isinstance(filtered_params[key], (list, dict)):
            value = json.dumps(filtered_params[key], separators=(',', ':'))
        else:
            value = str(filtered_params[key])
        sign_str += f"{key}{value}"

    # 添加密钥并计算MD5
    sign_str += self.app_secret
    return hashlib.md5(sign_str.encode('utf-8')).hexdigest().upper()

def search_orders(
    self,
    keyword: Optional[str] = None,
    order_no: Optional[str] = None,
    status_list: Optional[List[str]] = None,
    start_time: Optional[str] = None,
    end_time: Optional[str] = None,
    page_no: int = 1,
    page_size: int = 20,
    sort_field: str = "create_time",
    sort_order: str = "desc",
    fields: Optional[List[str]] = None,
    **extra_params
) -> Dict[str, Any]:
    """
    搜索物流订单

    Args:
        keyword: 搜索关键词(支持模糊匹配)
        order_no: 精确订单号
        status_list: 状态筛选列表
        start_time: 开始时间(格式:YYYY-MM-DD HH:MM:SS)
        end_time: 结束时间(格式:YYYY-MM-DD HH:MM:SS)
        page_no: 页码(从1开始)
        page_size: 每页数量(1-100)
        sort_field: 排序字段
        sort_order: 排序方向(desc降序/asc升序)
        fields: 指定返回字段列表
        **extra_params: 其他查询参数

    Returns:
        API响应数据
    """
    # 构建请求参数
    params = {
        "app_key": self.app_key,
        "timestamp": self._generate_timestamp(),
        "sign_method": "md5",
        "format": "json",
        "version": "1.0",
        "page_no": max(1, page_no),
        "page_size": min(max(1, page_size), 100),
        "sort_field": sort_field,
        "sort_order": sort_order,
    }

    # 添加可选参数
    if keyword:
        params["keyword"] = keyword
    if order_no:
        params["order_no"] = order_no
    if status_list:
        params["status"] = ",".join(status_list)
    if start_time:
        params["start_time"] = start_time
    if end_time:
        params["end_time"] = end_time
    if fields:
        params["fields"] = ",".join(fields)

    # 添加额外参数
    params.update(extra_params)

    # 生成签名
    params["sign"] = self._generate_sign(params)

    # 发送请求
    url = urljoin(self.base_url, "/v1/item/search")

    try:
        response = self.session.post(
            url,
            json=params,
            timeout=30
        )
        response.raise_for_status()

        result = response.json()

        # 验证返回签名(如果返回中有sign字段)
        if "sign" in result:
            # 注意:这里需要根据实际API返回的签名验证规则实现
            pass

        return result

    except requests.exceptions.Timeout:
        return {
            "success": False,
            "code": "TIMEOUT",
            "message": "请求超时",
            "data": None
        }
    except requests.exceptions.RequestException as e:
        return {
            "success": False,
            "code": "REQUEST_ERROR",
            "message": f"请求失败: {str(e)}",
            "data": None
        }
    except json.JSONDecodeError:
        return {
            "success": False,
            "code": "INVALID_RESPONSE",
            "message": "响应解析失败",
            "data": None
        }

def search_all_orders(
    self,
    **search_params
) -> List[Dict[str, Any]]:
    """
    获取所有符合条件的订单(自动处理分页)

    Args:
        **search_params: 搜索参数

    Returns:
        订单列表
    """
    all_orders = []
    page_no = 1

    while True:
        # 获取当前页数据
        result = self.search_orders(
            page_no=page_no,
            page_size=100,  # 使用最大页数减少请求次数
            **search_params
        )

        if not result.get("success"):
            print(f"第{page_no}页查询失败: {result.get('message')}")
            break

        data = result.get("data", {})
        orders = data.get("list", [])
        pagination = data.get("pagination", {})

        # 添加当前页数据
        all_orders.extend(orders)

        # 检查是否还有下一页
        current_page = pagination.get("page_no", page_no)
        total_pages = pagination.get("total_pages", 0)
        has_next = pagination.get("has_next", False)

        print(f"已获取第{current_page}页,共{len(orders)}条,总计{len(all_orders)}条")

        if not has_next or current_page >= total_pages:
            break

        page_no += 1

        # 避免请求过于频繁
        time.sleep(0.5)

    return all_orders

使用示例

def demo_search():
"""搜索接口使用演示"""

# 初始化客户端
client = JCLogisticsSearchAPI(
    app_key="your_app_key",
    app_secret="your_app_secret",
    sandbox=True
)

print("=== 示例1:关键词搜索 ===")
result1 = client.search_orders(
    keyword="北京",
    page_no=1,
    page_size=10
)
print(json.dumps(result1, ensure_ascii=False, indent=2))

print("\n=== 示例2:状态筛选 ===")
result2 = client.search_orders(
    status_list=["DELIVERED", "IN_TRANSIT"],
    start_time="2026-01-01 00:00:00",
    end_time="2026-02-01 23:59:59",
    sort_field="create_time",
    sort_order="desc"
)

print("\n=== 示例3:获取所有待发货订单 ===")
all_pending_orders = client.search_all_orders(
    status_list=["CREATED"],
    start_time="2026-01-01 00:00:00"
)
print(f"共找到 {len(all_pending_orders)} 个待发货订单")

if name == "main":
demo_search()
4.2 Java实现
import com.fasterxml.jackson.annotation.JsonInclude;
import com.fasterxml.jackson.databind.ObjectMapper;
import okhttp3.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.security.MessageDigest;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.*;
import java.util.concurrent.TimeUnit;

public class JCLogisticsSearchClient {
private static final Logger logger = LoggerFactory.getLogger(JCLogisticsSearchClient.class);

private final String appKey;
private final String appSecret;
private final String baseUrl;
private final OkHttpClient httpClient;
private final ObjectMapper objectMapper;

public JCLogisticsSearchClient(String appKey, String appSecret, boolean sandbox) {
    this.appKey = appKey;
    this.appSecret = appSecret;
    this.baseUrl = sandbox ? "https://sandbox-api.jc56.com" : "https://api.jc56.com";

    this.httpClient = new OkHttpClient.Builder()
            .connectTimeout(30, TimeUnit.SECONDS)
            .readTimeout(30, TimeUnit.SECONDS)
            .writeTimeout(30, TimeUnit.SECONDS)
            .addInterceptor(new LoggingInterceptor())
            .build();

    this.objectMapper = new ObjectMapper();
    this.objectMapper.setSerializationInclusion(JsonInclude.Include.NON_NULL);
}

// 搜索参数构建器
public static class SearchParams {
    private String keyword;
    private String orderNo;
    private List<String> statusList;
    private String startTime;
    private String endTime;
    private Integer pageNo = 1;
    private Integer pageSize = 20;
    private String sortField = "create_time";
    private String sortOrder = "desc";
    private List<String> fields;

    // 省略getter/setter和builder方法
}

public SearchResult searchOrders(SearchParams params) throws IOException {
    // 构建请求参数
    Map<String, Object> requestParams = new HashMap<>();
    requestParams.put("app_key", appKey);
    requestParams.put("timestamp", LocalDateTime.now()
            .format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss")));
    requestParams.put("sign_method", "md5");
    requestParams.put("format", "json");
    requestParams.put("version", "1.0");

    // 添加业务参数
    if (params.getKeyword() != null) {
        requestParams.put("keyword", params.getKeyword());
    }
    if (params.getStatusList() != null && !params.getStatusList().isEmpty()) {
        requestParams.put("status", String.join(",", params.getStatusList()));
    }
    // ... 其他参数

    // 生成签名
    String sign = generateSign(requestParams);
    requestParams.put("sign", sign);

    // 构建请求
    String jsonBody = objectMapper.writeValueAsString(requestParams);
    Request request = new Request.Builder()
            .url(baseUrl + "/v1/item/search")
            .post(RequestBody.create(jsonBody, MediaType.parse("application/json")))
            .addHeader("User-Agent", "JCLogistics-Java-Client/1.0")
            .build();

    // 发送请求
    try (Response response = httpClient.newCall(request).execute()) {
        if (!response.isSuccessful()) {
            throw new IOException("Unexpected code " + response);
        }

        String responseBody = response.body().string();
        return objectMapper.readValue(responseBody, SearchResult.class);
    }
}

// 省略其他辅助方法...

static class SearchResult {
    private Boolean success;
    private String code;
    private String message;
    private SearchData data;

    // 省略getter/setter
}

static class SearchData {
    private List<OrderInfo> list;
    private Pagination pagination;

    // 省略getter/setter
}

static class Pagination {
    private Integer pageNo;
    private Integer pageSize;
    private Integer totalCount;
    private Integer totalPages;
    private Boolean hasNext;

    // 省略getter/setter
}

}
4.3 PHP实现(Laravel示例)
<?php
namespace App\Services\Logistics;

use GuzzleHttp\Client;
use GuzzleHttp\Exception\RequestException;
use Illuminate\Support\Facades\Cache;
use Illuminate\Support\Facades\Log;

class JCLogisticsSearchService
{
private $appKey;
private $appSecret;
private $baseUrl;
private $client;
private $timeout = 30;

public function __construct($sandbox = true)
{
    $this->appKey = config('services.jc_logistics.app_key');
    $this->appSecret = config('services.jc_logistics.app_secret');
    $this->baseUrl = $sandbox 
        ? 'https://sandbox-api.jc56.com'
        : 'https://api.jc56.com';

    $this->client = new Client([
        'base_uri' => $this->baseUrl,
        'timeout' => $this->timeout,
        'headers' => [
            'User-Agent' => 'JCLogistics-Laravel-Client/1.0',
            'Accept' => 'application/json',
        ]
    ]);
}

/**
 * 搜索订单
 */
public function search(array $params = []): array
{
    try {
        // 基础参数
        $requestParams = [
            'app_key' => $this->appKey,
            'timestamp' => date('Y-m-d H:i:s'),
            'sign_method' => 'md5',
            'format' => 'json',
            'version' => '1.0',
        ];

        // 合并业务参数
        $requestParams = array_merge($requestParams, $params);

        // 生成签名
        $requestParams['sign'] = $this->generateSign($requestParams);

        // 发送请求
        $response = $this->client->post('/v1/item/search', [
            'json' => $requestParams,
            'http_errors' => false
        ]);

        $statusCode = $response->getStatusCode();
        $body = $response->getBody()->getContents();
        $result = json_decode($body, true);

        if ($statusCode !== 200) {
            Log::error('锦程物流搜索接口请求失败', [
                'status' => $statusCode,
                'response' => $result
            ]);

            return [
                'success' => false,
                'code' => 'HTTP_ERROR',
                'message' => '接口请求失败',
                'data' => null
            ];
        }

        return $result;

    } catch (RequestException $e) {
        Log::error('锦程物流搜索接口异常', [
            'error' => $e->getMessage()
        ]);

        return [
            'success' => false,
            'code' => 'REQUEST_EXCEPTION',
            'message' => $e->getMessage(),
            'data' => null
        ];
    }
}

/**
 * 带缓存搜索
 */
public function searchWithCache(array $params, int $ttl = 300): array
{
    $cacheKey = 'jc_search:' . md5(serialize($params));

    return Cache::remember($cacheKey, $ttl, function () use ($params) {
        return $this->search($params);
    });
}

/**
 * 生成签名
 */
private function generateSign(array $params): string
{
    // 移除sign参数
    unset($params['sign']);

    // 过滤空值并按键名排序
    $params = array_filter($params, function ($value) {
        return $value !== null && $value !== '';
    });
    ksort($params);

    // 拼接字符串
    $signStr = '';
    foreach ($params as $key => $value) {
        if (is_array($value) || is_object($value)) {
            $value = json_encode($value, JSON_UNESCAPED_UNICODE);
        }
        $signStr .= $key . $value;
    }

    // 添加密钥并计算MD5
    $signStr .= $this->appSecret;
    return strtoupper(md5($signStr));
}

/**
 * 批量搜索所有订单
 */
public function searchAll(array $params = []): array
{
    $allOrders = [];
    $pageNo = 1;

    do {
        $params['page_no'] = $pageNo;
        $params['page_size'] = 100;

        $result = $this->search($params);

        if (!$result['success']) {
            break;
        }

        $orders = $result['data']['list'] ?? [];
        $pagination = $result['data']['pagination'] ?? [];

        $allOrders = array_merge($allOrders, $orders);

        $hasNext = $pagination['has_next'] ?? false;
        $totalPages = $pagination['total_pages'] ?? 0;

        if (!$hasNext || $pageNo >= $totalPages) {
            break;
        }

        $pageNo++;
        usleep(500000); // 延迟0.5秒

    } while (true);

    return $allOrders;
}

}
五、返回结果处理
5.1 成功响应格式
{
"success": true,
"code": "10000",
"message": "成功",
"data": {
"list": [
{
"order_no": "JC202602010001",
"waybill_no": "SF123456789",
"status": "DELIVERED",
"status_desc": "已签收",
"shipper_name": "张三",
"shipper_phone": "13800138000",
"consignee_name": "李四",
"consignee_phone": "13900139000",
"create_time": "2026-02-01 09:00:00",
"update_time": "2026-02-01 16:30:00",
"product_name": "锦程快递",
"weight": 2.5,
"volume": 0.02,
"amount": 25.50
},
{
"order_no": "JC202602010002",
"waybill_no": "SF123456790",
"status": "IN_TRANSIT",
"status_desc": "运输中",
"shipper_name": "王五",
"shipper_phone": "13800138001",
"consignee_name": "赵六",
"consignee_phone": "13900139001",
"create_time": "2026-02-01 10:00:00",
"update_time": "2026-02-01 14:20:00",
"product_name": "锦程快运",
"weight": 15.8,
"volume": 0.15,
"amount": 120.00
}
],
"pagination": {
"page_no": 1,
"page_size": 20,
"total_count": 125,
"total_pages": 7,
"has_next": true,
"has_previous": false
},
"summary": {
"total_amount": 2845.50,
"total_weight": 158.3,
"order_count": 125,
"status_distribution": {
"CREATED": 12,
"PICKED_UP": 28,
"IN_TRANSIT": 45,
"DELIVERED": 40
}
}
}
}
5.2 响应字段说明
订单信息字段
字段名

类型

说明

order_no

string

订单号(唯一标识)

waybill_no

string

运单号

status

string

状态编码

status_desc

string

状态描述

shipper_*

string

发货人信息

consignee_*

string

收货人信息

create_time

string

创建时间

update_time

string

更新时间

product_name

string

产品名称

weight

float

重量(kg)

volume

float

体积(m³)

amount

float

金额(元)
分页信息字段
字段名

类型

说明

page_no

int

当前页码

page_size

int

每页数量

total_count

int

总记录数

total_pages

int

总页数

has_next

bool

是否有下一页

has_previous

bool

是否有上一页
5.3 错误响应处理
class JCLogisticsError(Exception):
"""锦程物流API异常基类"""
pass

class AuthenticationError(JCLogisticsError):
"""认证错误"""
pass

class ValidationError(JCLogisticsError):
"""参数验证错误"""
pass

class RateLimitError(JCLogisticsError):
"""频率限制错误"""
pass

class APIError(JCLogisticsError):
"""API错误"""
def init(self, code, message, response=None):
self.code = code
self.message = message
self.response = response
super().init(f"[{code}] {message}")

def handle_api_response(response: Dict[str, Any]) -> Dict[str, Any]:
"""
统一处理API响应

Args:
    response: API响应数据

Returns:
    处理后的数据

Raises:
    各种业务异常
"""
if not response.get("success"):
    code = response.get("code")
    message = response.get("message", "未知错误")

    # 根据错误码抛出特定异常
    if code in ["20001", "20002", "20003"]:
        raise AuthenticationError(message)
    elif code in ["20004", "20005"]:
        raise ValidationError(message)
    elif code == "20006":
        raise RateLimitError(message)
    else:
        raise APIError(code, message, response)

return response.get("data", {})

使用示例

try:
result = client.search_orders(keyword="测试")
data = handle_api_response(result)
orders = data.get("list", [])

except AuthenticationError as e:
print(f"认证失败: {e}")

# 重新获取token或提醒用户

except RateLimitError as e:
print(f"请求频率超限: {e}")

# 等待后重试
time.sleep(60)

except APIError as e:
print(f"API错误: {e}")

# 记录日志并通知管理员
logger.error(f"锦程物流API错误: {e.code} - {e.message}")

except Exception as e:
print(f"未知错误: {e}")
六、高级功能实现
6.1 智能搜索建议
class IntelligentSearchService:
"""智能搜索服务"""

def __init__(self, api_client):
    self.client = api_client
    self.search_history = []  # 搜索历史缓存

def smart_search(self, query: str) -> Dict[str, Any]:
    """
    智能搜索:自动识别搜索类型

    Args:
        query: 搜索查询字符串

    Returns:
        搜索结果
    """
    # 识别查询类型
    search_type = self._detect_search_type(query)

    # 构建搜索参数
    params = self._build_search_params(query, search_type)

    # 执行搜索
    result = self.client.search_orders(**params)

    # 记录搜索历史
    self._record_search_history(query, search_type, result)

    return result

def _detect_search_type(self, query: str) -> str:
    """
    自动识别搜索类型
    """
    # 检查是否为订单号(特定格式)
    if re.match(r'^JC\d{12}$', query):
        return 'order_no'

    # 检查是否为运单号
    if re.match(r'^[A-Z]{2}\d{9}$', query):
        return 'waybill_no'

    # 检查是否为手机号
    if re.match(r'^1[3-9]\d{9}$', query):
        return 'phone'

    # 检查是否为日期
    if re.match(r'^\d{4}-\d{2}-\d{2}$', query):
        return 'date'

    # 默认为关键词搜索
    return 'keyword'

def _build_search_params(self, query: str, search_type: str) -> Dict[str, Any]:
    """
    根据搜索类型构建参数
    """
    params = {}

    if search_type == 'order_no':
        params['order_no'] = query
    elif search_type == 'waybill_no':
        params['waybill_no'] = query
    elif search_type == 'phone':
        # 尝试同时搜索发货人和收货人电话
        params['shipper_phone'] = query
        params['consignee_phone'] = query
    elif search_type == 'date':
        params['start_time'] = f"{query} 00:00:00"
        params['end_time'] = f"{query} 23:59:59"
    else:
        params['keyword'] = query

    return params

6.2 实时搜索提示
// 前端实现示例(Vue.js)




6.3 搜索性能优化
import redis
from functools import lru_cache
from datetime import datetime, timedelta

class OptimizedSearchService:
"""优化搜索服务"""

def __init__(self, api_client, redis_client):
    self.api_client = api_client
    self.redis = redis_client
    self.cache_prefix = "jc_search:"

@lru_cache(maxsize=1000)
def search_with_cache(self, cache_key: str, **params):
    """
    使用内存缓存和Redis缓存的搜索
    """
    # 先尝试从Redis获取
    cached = self.redis.get(cache_key)
    if cached:
        return json.loads(cached)

    # 调用API
    result = self.api_client.search_orders(**params)

    # 缓存到Redis(根据数据量设置不同过期时间)
    if result.get("success"):
        data = result.get("data", {})
        total_count = data.get("pagination", {}).get("total_count", 0)

        # 根据数据量设置缓存时间
        if total_count == 0:
            ttl = 300  # 5分钟
        elif total_count <= 100:
            ttl = 1800  # 30分钟
        else:
            ttl = 3600  # 1小时

        self.redis.setex(
            cache_key,
            ttl,
            json.dumps(result)
        )

    return result

def smart_search_optimized(self, **params) -> Dict[str, Any]:
    """
    智能优化搜索
    """
    # 生成缓存键
    cache_key = self._generate_cache_key(params)

    # 检查是否可以使用缓存
    if self._can_use_cache(params):
        return self.search_with_cache(cache_key, **params)

    # 实时搜索
    return self.api_client.search_orders(**params)

def _generate_cache_key(self, params: Dict[str, Any]) -> str:
    """生成缓存键"""
    # 移除分页参数,因为它们不影响数据本身
    cache_params = params.copy()
    cache_params.pop('page_no', None)
    cache_params.pop('page_size', None)

    # 生成唯一键
    param_str = json.dumps(cache_params, sort_keys=True)
    return f"{self.cache_prefix}{hashlib.md5(param_str.encode()).hexdigest()}"

def _can_use_cache(self, params: Dict[str, Any]) -> bool:
    """判断是否可以使用缓存"""
    # 实时性要求高的查询不使用缓存
    if params.get('real_time', False):
        return False

    # 特定状态不使用缓存
    real_time_statuses = ['PICKED_UP', 'IN_TRANSIT', 'DELIVERING']
    if params.get('status') in real_time_statuses:
        return False

    return True

def batch_search(self, search_queries: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
    """
    批量搜索优化
    """
    from concurrent.futures import ThreadPoolExecutor, as_completed

    results = []

    with ThreadPoolExecutor(max_workers=5) as executor:
        # 提交所有搜索任务
        future_to_query = {
            executor.submit(self.smart_search_optimized, **query): query 
            for query in search_queries
        }

        # 收集结果
        for future in as_completed(future_to_query):
            try:
                result = future.result(timeout=10)
                results.append(result)
            except Exception as e:
                query = future_to_query[future]
                print(f"查询失败 {query}: {e}")
                results.append({
                    "success": False,
                    "error": str(e)
                })

    return results

七、实战应用场景
7.1 物流管理系统集成
class LogisticsManagementSystem:
"""物流管理系统集成示例"""

def __init__(self, jc_client):
    self.jc_client = jc_client
    self.order_cache = {}

def search_orders_by_criteria(self, criteria: Dict[str, Any]) -> List[Dict[str, Any]]:
    """
    根据综合条件搜索订单

    Args:
        criteria: 搜索条件字典,包含:
            - date_range: 日期范围
            - status: 状态
            - customer_info: 客户信息
            - product_type: 产品类型
            - amount_range: 金额范围

    Returns:
        订单列表
    """
    # 构建API搜索参数
    search_params = {}

    # 处理日期范围
    if 'date_range' in criteria:
        start_date, end_date = criteria['date_range']
        search_params['start_time'] = f"{start_date} 00:00:00"
        search_params['end_time'] = f"{end_date} 23:59:59"

    # 处理状态
    if 'status' in criteria:
        search_params['status'] = criteria['status']

    # 处理客户信息
    if 'customer_info' in criteria:
        customer = criteria['customer_info']
        # 尝试多种搜索方式
        if 'phone' in customer:
            search_params['shipper_phone'] = customer['phone']
            search_params['consignee_phone'] = customer['phone']
        elif 'name' in customer:
            search_params['keyword'] = customer['name']

    # 执行搜索
    result = self.jc_client.search_orders(**search_params)

    if not result.get('success'):
        raise Exception(f"搜索失败: {result.get('message')}")

    orders = result.get('data', {}).get('list', [])

    # 应用额外的过滤条件
    filtered_orders = self._apply_filters(orders, criteria)

    return filtered_orders

def get_dashboard_stats(self, start_date: str, end_date: str) -> Dict[str, Any]:
    """
    获取仪表板统计信息
    """
    # 搜索所有订单
    all_orders = self.jc_client.search_all_orders(
        start_time=f"{start_date} 00:00:00",
        end_time=f"{end_date} 23:59:59"
    )

    # 计算统计信息
    stats = {
        'total_orders': len(all_orders),
        'total_amount': sum(order.get('amount', 0) for order in all_orders),
        'total_weight': sum(order.get('weight', 0) for order in all_orders),
        'status_distribution': {},
        'daily_trend': self._calculate_daily_trend(all_orders)
    }

    # 统计状态分布
    for order in all_orders:
        status = order.get('status', 'UNKNOWN')
        stats['status_distribution'][status] = \
            stats['status_distribution'].get(status, 0) + 1

    return stats

def export_orders_to_excel(self, search_params: Dict[str, Any], 
                          filename: str) -> str:
    """
    导出订单到Excel
    """
    import pandas as pd

    # 获取所有订单
    all_orders = self.jc_client.search_all_orders(**search_params)

    # 转换为DataFrame
    df = pd.DataFrame(all_orders)

    # 数据清洗和转换
    if not df.empty:
        # 选择需要的列
        columns = ['order_no', 'waybill_no', 'status_desc', 
                  'shipper_name', 'shipper_phone',
                  'consignee_name', 'consignee_phone',
                  'create_time', 'amount', 'weight']

        df = df[columns]

        # 重命名列
        column_mapping = {
            'order_no': '订单号',
            'waybill_no': '运单号',
            'status_desc': '状态',
            'shipper_name': '发货人',
            'shipper_phone': '发货人电话',
            'consignee_name': '收货人',
            'consignee_phone': '收货人电话',
            'create_time': '创建时间',
            'amount': '金额',
            'weight': '重量'
        }
        df = df.rename(columns=column_mapping)

    # 导出到Excel
    df.to_excel(filename, index=False)

    return filename

7.2 订单状态监控系统
class OrderMonitor:
"""订单状态监控系统"""

def __init__(self, jc_client, alert_service):
    self.jc_client = jc_client
    self.alert_service = alert_service
    self.monitored_statuses = {
        'DELAYED': 24 * 3600,  # 24小时未更新
        'EXCEPTION': 0,        # 异常状态立即通知
    }

def monitor_abnormal_orders(self):
    """
    监控异常订单
    """
    # 搜索特定状态的订单
    abnormal_orders = []

    for status in ['EXCEPTION', 'PROBLEM']:
        result = self.jc_client.search_orders(
            status=status,
            page_size=100
        )

        if result.get('success'):
            orders = result.get('data', {}).get('list', [])
            abnormal_orders.extend(orders)

    # 处理异常订单
    for order in abnormal_orders:
        self._handle_abnormal_order(order)

def monitor_delayed_orders(self):
    """
    监控延迟订单
    """
    # 搜索24小时未更新的运输中订单
    import datetime

    cutoff_time = (datetime.datetime.now() - 
                  datetime.timedelta(hours=24)).strftime("%Y-%m-%d %H:%M:%S")

    result = self.jc_client.search_orders(
        status='IN_TRANSIT',
        end_time=cutoff_time,
        sort_field='update_time',
        sort_order='asc'
    )

    if result.get('success'):
        delayed_orders = result.get('data', {}).get('list', [])

        for order in delayed_orders:
            self._handle_delayed_order(order)

def _handle_abnormal_order(self, order: Dict[str, Any]):
    """处理异常订单"""
    order_no = order.get('order_no')
    status_desc = order.get('status_desc', '未知状态')

    # 发送告警
    alert_message = f"""
    订单异常告警!
    订单号:{order_no}
    状态:{status_desc}
    发货人:{order.get('shipper_name')}
    收货人:{order.get('consignee_name')}
    更新时间:{order.get('update_time')}
    """

    self.alert_service.send_alert(
        title="物流订单异常",
        message=alert_message,
        level="HIGH",
        recipients=["logistics_manager@company.com"]
    )

    # 记录到数据库
    self._log_abnormal_order(order)

def _handle_delayed_order(self, order: Dict[str, Any]):
    """处理延迟订单"""
    order_no = order.get('order_no')
    last_update = order.get('update_time')

    # 发送通知
    notification = f"""
    订单运输延迟提醒
    订单号:{order_no}
    最后更新:{last_update}
    已超过24小时未更新状态
    请及时跟进处理
    """

    self.alert_service.send_alert(
        title="订单运输延迟",
        message=notification,
        level="MEDIUM",
        recipients=["customer_service@company.com"]
    )

八、故障排查与优化
8.1 常见问题解决
问题1:签名验证失败
症状:返回"签名错误"或"签名验证失败"

解决方案:调试签名生成过程

def debug_signature(params, app_secret):
"""调试签名生成"""
print("=== 签名调试信息 ===")
print(f"原始参数: {params}")

# 1. 过滤并排序参数
filtered = {k: v for k, v in params.items() if v is not None and k != 'sign'}
sorted_keys = sorted(filtered.keys())

print(f"排序后的键: {sorted_keys}")

# 2. 拼接字符串
sign_str = ''
for key in sorted_keys:
    value = str(filtered[key])
    sign_str += f"{key}{value}"
    print(f"  {key}: {value}")

sign_str += app_secret
print(f"拼接结果: {sign_str}")

# 3. 计算签名
import hashlib
signature = hashlib.md5(sign_str.encode('utf-8')).hexdigest().upper()
print(f"计算签名: {signature}")

return signature

问题2:分页数据不准确
症状:分页数据重复或缺失

解决方案:使用稳定的排序字段

def stable_pagination_search(self, **params):
"""
稳定的分页搜索
"""

# 确保有排序字段
if 'sort_field' not in params:
    params['sort_field'] = 'order_no'  # 使用唯一字段排序

if 'sort_order' not in params:
    params['sort_order'] = 'asc'

# 处理游标分页
last_order_no = None
all_orders = []

while True:
    if last_order_no:
        # 使用游标进行分页
        params['cursor'] = last_order_no

    result = self.search_orders(**params)

    if not result.get('success'):
        break

    orders = result.get('data', {}).get('list', [])
    if not orders:
        break

    all_orders.extend(orders)
    last_order_no = orders[-1].get('order_no')

    # 检查是否还有更多数据
    pagination = result.get('data', {}).get('pagination', {})
    if not pagination.get('has_next', False):
        break

    # 避免频繁请求
    time.sleep(0.1)

return all_orders

问题3:API限流处理
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception

class RateLimitedClient:
"""带限流处理的客户端"""

def __init__(self, api_client):
    self.api_client = api_client
    self.rate_limiter = RateLimiter(max_calls=100, period=60)  # 60秒100次

def is_rate_limit_error(self, result):
    """判断是否为限流错误"""
    return result.get('code') == '20005'  # 频率限制错误码

@retry(
    stop=stop_after_attempt(3),
    wait=wait_exponential(multiplier=1, min=2, max=10),
    retry=retry_if_exception(lambda x: isinstance(x, dict) and 
                            x.get('code') == '20005')
)
def search_with_retry(self, **params):
    """带重试的搜索"""
    with self.rate_limiter:
        result = self.api_client.search_orders(**params)

        if self.is_rate_limit_error(result):
            raise result  # 触发重试

        return result

8.2 性能优化建议
合理使用缓存

多级缓存策略

class MultiLevelCache:
def init(self):
self.memory_cache = {} # 内存缓存
self.redis_cache = redis.Redis() # Redis缓存
self.local_ttl = 60 # 内存缓存60秒
self.redis_ttl = 300 # Redis缓存5分钟

def get(self, key):
    # 1. 检查内存缓存
    if key in self.memory_cache:
        item = self.memory_cache[key]
        if time.time() < item['expire']:
            return item['data']

    # 2. 检查Redis缓存
    cached = self.redis_cache.get(key)
    if cached:
        data = json.loads(cached)
        # 更新内存缓存
        self.memory_cache[key] = {
            'data': data,
            'expire': time.time() + self.local_ttl
        }
        return data

    return None

连接池管理
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry

def create_session_with_pool():
"""创建带连接池的会话"""
session = requests.Session()

# 配置重试策略
retry_strategy = Retry(
    total=3,
    backoff_factor=0.5,
    status_forcelist=[429, 500, 502, 503, 504],
)

adapter = HTTPAdapter(
    max_retries=retry_strategy,
    pool_connections=10,  # 连接池大小
    pool_maxsize=100,
    pool_block=False
)

session.mount("https://", adapter)
session.mount("http://", adapter)

return session

批量请求优化
from concurrent.futures import ThreadPoolExecutor, as_completed
import asyncio

async def batch_search_async(search_queries):
"""异步批量搜索"""
async with aiohttp.ClientSession() as session:
tasks = []
for query in search_queries:
task = self._async_search(session, query)
tasks.append(task)

    results = await asyncio.gather(*tasks, return_exceptions=True)
    return results

九、监控与告警
9.1 监控指标
class APIMonitor:
"""API监控"""

def __init__(self):
    self.metrics = {
        'total_requests': 0,
        'successful_requests': 0,
        'failed_requests': 0,
        'average_response_time': 0,
        'error_codes': {},
        'last_error_time': None
    }

def record_request(self, success, response_time, error_code=None):
    """记录请求指标"""
    self.metrics['total_requests'] += 1

    if success:
        self.metrics['successful_requests'] += 1
    else:
        self.metrics['failed_requests'] += 1
        if error_code:
            self.metrics['error_codes'][error_code] = \
                self.metrics['error_codes'].get(error_code, 0) + 1
        self.metrics['last_error_time'] = time.time()

    # 更新平均响应时间(移动平均)
    alpha = 0.1  # 平滑因子
    old_avg = self.metrics['average_response_time']
    self.metrics['average_response_time'] = \
        alpha * response_time + (1 - alpha) * old_avg

def get_health_status(self):
    """获取健康状态"""
    total = self.metrics['total_requests']
    if total == 0:
        return "UNKNOWN"

    success_rate = self.metrics['successful_requests'] / total

    if success_rate > 0.95:
        return "HEALTHY"
    elif success_rate > 0.8:
        return "DEGRADED"
    else:
        return "UNHEALTHY"

9.2 告警配置

alert_rules.yaml

alert_rules:

  • name: "api_error_rate_high"
    condition: "error_rate > 0.1"
    duration: "5m"
    severity: "warning"
    message: "API错误率超过10%"

  • name: "api_response_time_slow"
    condition: "response_time_p95 > 5000"
    duration: "10m"
    severity: "warning"
    message: "API响应时间P95超过5秒"

  • name: "api_unavailable"
    condition: "success_rate == 0"
    duration: "2m"
    severity: "critical"
    message: "API完全不可用"
    十、最佳实践总结
    10.1 安全实践
    密钥管理:使用环境变量或密钥管理服务,不要硬编码在代码中
    访问控制:为不同环境使用不同的API密钥
    请求验证:验证所有输入参数,防止注入攻击
    HTTPS强制:确保所有请求都使用HTTPS
    10.2 性能实践
    合理分页:根据实际需求设置合适的page_size
    缓存策略:对不常变的数据使用缓存
    连接复用:使用连接池减少连接建立开销
    异步处理:批量操作使用异步方式提高吞吐量
    10.3 代码质量
    错误处理:完善的异常处理和重试机制
    日志记录:详细记录请求和响应信息
    单元测试:编写测试用例覆盖主要功能
    代码审查:定期进行代码审查和安全检查
    10.4 运维实践
    监控告警:实时监控API调用情况
    容量规划:根据业务量预估API调用频率
    版本管理:记录API版本变更,制定升级计划
    文档维护:保持接口文档的及时更新
    附录:快速开始模板

    quick_start.py

    from jc_logistics import JCLogisticsSearchAPI

1. 初始化客户端

client = JCLogisticsSearchAPI(
app_key="your_app_key",
app_secret="your_app_secret",
sandbox=True # 测试环境
)

2. 简单搜索

result = client.search_orders(keyword="测试订单")
print(f"找到 {len(result['data']['list'])} 条记录")

3. 条件搜索

result = client.search_orders(
status_list=["DELIVERED"],
start_time="2026-01-01 00:00:00",
end_time="2026-02-01 23:59:59",
page_size=50
)

4. 获取所有数据

all_orders = client.search_all_orders(
keyword="重要客户",
status_list=["IN_TRANSIT", "DELIVERED"]
)
print(f"总共找到 {len(all_orders)} 条订单")
通过本攻略,您应该能够全面掌握锦程物流item_search接口的对接和使用。建议根据实际业务需求选择合适的实现方案,并遵循最佳实践确保系统的稳定性和可维护性。

相关文章
|
4天前
|
人工智能 自然语言处理 Shell
🦞 如何在 Moltbot 配置阿里云百炼 API
本教程指导用户在开源AI助手Clawdbot中集成阿里云百炼API,涵盖安装Clawdbot、获取百炼API Key、配置环境变量与模型参数、验证调用等完整流程,支持Qwen3-max thinking (Qwen3-Max-2026-01-23)/Qwen - Plus等主流模型,助力本地化智能自动化。
🦞 如何在 Moltbot 配置阿里云百炼 API
|
3天前
|
人工智能 JavaScript 应用服务中间件
零门槛部署本地AI助手:Windows系统Moltbot(Clawdbot)保姆级教程
Moltbot(原Clawdbot)是一款功能全面的智能体AI助手,不仅能通过聊天互动响应需求,还具备“动手”和“跑腿”能力——“手”可读写本地文件、执行代码、操控命令行,“脚”能联网搜索、访问网页并分析内容,“大脑”则可接入Qwen、OpenAI等云端API,或利用本地GPU运行模型。本教程专为Windows系统用户打造,从环境搭建到问题排查,详细拆解全流程,即使无技术基础也能顺利部署本地AI助理。
4443 7
|
9天前
|
人工智能 API 开发者
Claude Code 国内保姆级使用指南:实测 GLM-4.7 与 Claude Opus 4.5 全方案解
Claude Code是Anthropic推出的编程AI代理工具。2026年国内开发者可通过配置`ANTHROPIC_BASE_URL`实现本地化接入:①极速平替——用Qwen Code v0.5.0或GLM-4.7,毫秒响应,适合日常编码;②满血原版——经灵芽API中转调用Claude Opus 4.5,胜任复杂架构与深度推理。
|
3天前
|
人工智能 JavaScript API
零门槛部署本地 AI 助手:Clawdbot/Meltbot 部署深度保姆级教程
Clawdbot(Moltbot)是一款智能体AI助手,具备“手”(读写文件、执行代码)、“脚”(联网搜索、分析网页)和“脑”(接入Qwen/OpenAI等API或本地GPU模型)。本指南详解Windows下从Node.js环境搭建、一键安装到Token配置的全流程,助你快速部署本地AI助理。(239字)
2767 16
|
3天前
|
机器人 API 数据安全/隐私保护
只需3步,无影云电脑一键部署Moltbot(Clawdbot)
本指南详解Moltbot(Clawdbot)部署全流程:一、购买无影云电脑Moltbot专属套餐(含2000核时);二、下载客户端并配置百炼API Key、钉钉APP KEY及QQ通道;三、验证钉钉/群聊交互。支持多端,7×24运行可关闭休眠。
3137 4
|
3天前
|
人工智能 安全 Shell
在 Moltbot (Clawdbot) 里配置调用阿里云百炼 API 完整教程
Moltbot(原Clawdbot)是一款开源AI个人助手,支持通过自然语言控制设备、处理自动化任务,兼容Qwen、Claude、GPT等主流大语言模型。若需在Moltbot中调用阿里云百炼提供的模型能力(如通义千问3系列),需完成API配置、环境变量设置、配置文件编辑等步骤。本文将严格遵循原教程逻辑,用通俗易懂的语言拆解完整流程,涵盖前置条件、安装部署、API获取、配置验证等核心环节,确保不改变原意且无营销表述。
1818 3
|
4天前
|
存储 安全 数据库
使用 Docker 部署 Clawdbot(官方推荐方式)
Clawdbot 是一款开源、本地运行的个人AI助手,支持 WhatsApp、Telegram、Slack 等十余种通信渠道,兼容 macOS/iOS/Android,可渲染实时 Canvas 界面。本文提供基于 Docker Compose 的生产级部署指南,涵盖安全配置、持久化、备份、监控等关键运维实践(官方无预构建镜像,需源码本地构建)。
2182 7
|
12天前
|
JSON API 数据格式
OpenCode入门使用教程
本教程介绍如何通过安装OpenCode并配置Canopy Wave API来使用开源模型。首先全局安装OpenCode,然后设置API密钥并创建配置文件,最后在控制台中连接模型并开始交互。
5224 8
|
3天前
|
人工智能 应用服务中间件 API
刚刚,阿里云上线Clawdbot全套云服务!
阿里云上线Moltbot(原Clawdbot)全套云服务,支持轻量服务器/无影云电脑一键部署,可调用百炼平台百余款千问模型,打通iMessage与钉钉消息通道,打造开箱即用的AI智能体助手。
2353 18
刚刚,阿里云上线Clawdbot全套云服务!
|
3天前
|
人工智能 应用服务中间件 API
阿里云上线Clawdbot全套云服务,阿里云 Moltbot 全套云服务部署与使用指南
近期,阿里云正式上线 Moltbot(原名 Clawdbot)全套云服务,这套服务整合了 Agent 所需的算力、模型与消息应用能力,用户无需复杂配置,就能在轻量应用服务器或无影云电脑上快速启用 Moltbot,还能按需调用阿里云百炼平台的千问系列模型,同时支持 iMessage、钉钉等消息通道互动。相比传统本地部署方式,云服务方案不仅降低了硬件成本,还解决了网络依赖与多任务处理瓶颈,让普通用户也能轻松拥有专属 AI 助手。本文结合官方部署教程与全网实操经验,用通俗语言拆解从环境准备到功能使用的完整流程,同时说明核心组件的作用与注意事项,帮助用户顺利落地 Moltbot 云服务。
1765 0
阿里云上线Clawdbot全套云服务,阿里云 Moltbot 全套云服务部署与使用指南

热门文章

最新文章