YOLO26改进 - 注意力机制 |融合HCF-Net维度感知选择性整合模块DASI 增强小目标显著性

简介: 本文介绍将HCF-Net中的维度感知选择性融合(DASI)模块集成至YOLO26检测头,通过通道分区与Sigmoid自适应加权,融合高/低维及当前层特征,显著提升红外小目标检测精度,在SIRST数据集上超越主流方法。(239字)

前言

本文介绍了维度感知选择性融合(DASI)模块在YOLO26中的结合应用。DASI模块是HCF - Net用于红外小目标检测的关键组件,可实现自适应的通道选择和融合。它通过对高维、低维和当前层特征进行对齐、分区,依据sigmoid激活值自适应选择细粒度或上下文特征进行融合。我们将DASI集成到YOLO26的检测头中,并进行相关注册和配置。实验表明,改进后的模型在SIRST红外单帧图像数据集上表现优异,超越了其他传统和深度学习模型。

文章目录: YOLO26改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总

专栏链接: YOLO26改进专栏

@[TOC]

介绍

image-20240701160512143

摘要

红外小目标检测作为计算机视觉领域的一项关键任务,旨在识别并定位红外图像中的微小目标,这些目标往往仅有几个像素大小。然而,由于目标体积微小且红外图像背景通常较为复杂,该任务面临着诸多挑战。本文提出了一种深度学习方法HCF - Net,借助多个实用模块显著提高了红外小目标检测的性能。具体来讲,该方法包含并行化的感知补丁注意力(PPA)模块、维度感知选择性融合(DASI)模块和多膨胀通道优化(MDCR)模块。PPA模块采用多分支特征提取策略来捕获不同尺度和层次的特征信息;DASI模块实现了自适应的通道选择与融合;MDCR模块通过多层深度可分离卷积捕捉不同感受野范围的空间特征。大量实验结果显示,在SIRST红外单帧图像数据集上,所提出的HCF - Net表现卓越,超越了其他传统模型和深度学习模型。代码可从https://github.com/zhengshuchen/HCFNet获取。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

HCF-Net(Hierarchical Context Fusion Network)是一种用于红外小目标检测的深度学习模型,旨在提高对红外图像中微小目标的识别和定位能力。

  1. 网络架构:HCF-Net采用了一种升级版的U-Net架构,主要由三个关键模块组成:Parallelized Patch-Aware Attention(PPA)模块、Dimension-Aware Selective Integration(DASI)模块和Multi-Dilated Channel Refiner(MDCR)模块。这些模块在不同层级上解决了红外小目标检测中的挑战 。

  2. PPA模块

    • Hierarchical Feature Fusion:PPA模块利用分层特征融合和注意力机制,以在多次下采样过程中保持和增强小目标的表示,确保关键信息在整个网络中得以保留[T1]。
    • Multi-Branch Feature Extraction:PPA采用多分支特征提取策略,以捕获不同尺度和级别的特征信息,从而提高小目标检测的准确性 。
  3. DASI模块

    • Adaptive Feature Fusion:DASI模块增强了U-Net中的跳跃连接,专注于高低维特征的自适应选择和精细融合,以增强小目标的显著性 。
  4. MDCR模块

    • Spatial Feature Refinement:MDCR模块通过多个深度可分离卷积层捕获不同感受野范围的空间特征,更细致地建模目标和背景之间的差异,提高了定位小目标的能力 。

image-20240701161043152

DASI

在红外小物体检测的多个降采样阶段中,高维特征可能会丢失小物体的信息,而低维特征可能无法提供足够的背景信息。为解决这一问题,提出了一种新颖的信道分区选择机制(如图 3 所示),使 DASI 能够根据物体的大小和特征自适应地选择合适的特征进行融合。

具体来说,DASI 首先通过卷积和插值等操作,将高维特征$( \mathbf{F}_{h} \in \mathbb{R}^{H_h \times W_h \times Ch} )$ 和低维特征 $( \mathbf{F}{l} \in \mathbb{R}^{H_l \times W_l \times Cl} )$,以及当前层的特征 $( \mathbf{F}{u} \in \mathbb{R}^{H \times W \times C} )$ 对齐。随后,它将这些特征在通道维度上分成四个相等的部分,从而得到 $( (\mathbf{h}i){i=1}^4 \in \mathbb{R}^{H \times W \times \frac{C}{4}}$, $(\mathbf{l}i){i=1}^4 \in \mathbb{R}^{H \times W \times \frac{C}{4}}$, $(\mathbf{u}i){i=1}^4 \in \mathbb{R}^{H \times W \times \frac{C}{4}} )$,其中 $( \mathbf{h}_i, \mathbf{l}_i, \mathbf{u}_i )$ 分别表示高维、低维和当前层特征的第 $( i)$ 个分区特征。

这些分区的计算公式如下:
$$ \alpha = \mathrm{sigmoid}(\mathbf{u}_i), $$
$$\mathbf{u}_i' = \alpha \mathbf{l}_i + (1 - \alpha) \mathbf{h}_i,$$
$$\mathbf{F}_{u}' = [\mathbf{u}_1', \mathbf{u}_2', \mathbf{u}_3', \mathbf{u}_4'], $$
$$ \mathbf{F}_{u}^{\hat{}} = \delta \left( \mathcal{B} \left( \mathrm{Conv}(\mathbf{F}_{u}') \right) \right),$$

其中,$( \alpha \in \mathbb{R}^{H \times W \times \frac{C}{4}} ) 表示应用于 ( \mathbf{u}_i )$ 的 sigmoid 激活函数后得到的值,$( \mathbf{u}_i' \in \mathbb{R}^{H \times W \times \frac{C}{4}} )$ 表示每个分区的选择性汇总结果。在通道维度上合并 $( (\mathbf{u}i'){i=1}^4 )$ 后,得到 $( \mathbf{F}{u}' \in \mathbb{R}^{H \times W \times C} )$。操作 $( \mathrm{Conv}() )$、 $( \mathcal{B}(\cdot) )$ 和 $( \delta(\cdot) )$ 分别表示卷积、批量归一化(BN)和整流线性单元(ReLU),最终得到输出 $( \hat{\mathbf{F}}{u} \in \mathbb{R}^{H \times W \times C} )$。

如果 $( \alpha > 0.5 )$,则模型优先考虑细粒度特征;如果 $( \alpha < 0.5 )$,则强调上下文特征。

image-20240702091658102

核心代码


class DASI(nn.Module):
    def __init__(self, in_features, out_features) -> None:
        super().__init__()


        self.bag = Bag()

        # 尾部卷积层
        self.tail_conv = nn.Sequential(
            conv_block(in_features=out_features,
                       out_features=out_features,
                       kernel_size=(1, 1),
                       padding=(0, 0),
                       norm_type=None,
                       activation=False)
        )

        # 主要卷积操作
        self.conv = nn.Sequential(
            conv_block(in_features=out_features // 2,
                       out_features=out_features // 4,
                       kernel_size=(1, 1),
                       padding=(0, 0),
                       norm_type=None,
                       activation=False)
        )

        # 批量归一化层
        self.bns = nn.BatchNorm2d(out_features)

        # 跳跃连接处理
        self.skips = conv_block(in_features=in_features,
                                out_features=out_features,
                                kernel_size=(1, 1),
                                padding=(0, 0),
                                norm_type=None,
                                activation=False)

        self.skips_2 = conv_block(in_features=in_features * 2,
                                  out_features=out_features,
                                  kernel_size=(1, 1),
                                  padding=(0, 0),
                                  norm_type=None,
                                  activation=False)

        self.skips_3 = nn.Conv2d(in_features // 2, out_features,
                                 kernel_size=3, stride=2, dilation=2, padding=2)
        # self.skips_3 = nn.Conv2d(in_features // 2, out_features,
        #                          kernel_size=3, stride=2, dilation=1, padding=1)

        # 激活函数
        self.relu = nn.ReLU()
        self.gelu = nn.GELU()

    def forward(self, x, x_low, x_high):

        if x_high is not None:
            x_high = self.skips_3(x_high)
            x_high = torch.chunk(x_high, 4, dim=1)


        if x_low is not None:
            x_low = self.skips_2(x_low)
            x_low = F.interpolate(x_low, size=[x.size(2), x.size(3)], mode='bilinear', align_corners=True)
            x_low = torch.chunk(x_low, 4, dim=1)


        x_skip = self.skips(x)
        x = self.skips(x)
        x = torch.chunk(x, 4, dim=1)


        if x_high is None:
            x0 = self.conv(torch.cat((x[0], x_low[0]), dim=1))
            x1 = self.conv(torch.cat((x[1], x_low[1]), dim=1))
            x2 = self.conv(torch.cat((x[2], x_low[2]), dim=1))
            x3 = self.conv(torch.cat((x[3], x_low[3]), dim=1))
        elif x_low is None:
            x0 = self.conv(torch.cat((x[0], x_high[0]), dim=1))
            x1 = self.conv(torch.cat((x[0], x_high[1]), dim=1))
            x2 = self.conv(torch.cat((x[0], x_high[2]), dim=1))
            x3 = self.conv(torch.cat((x[0], x_high[3]), dim=1))
        else:
            x0 = self.bag(x_low[0], x_high[0], x[0])
            x1 = self.bag(x_low[1], x_high[1], x[1])
            x2 = self.bag(x_low[2], x_high[2], x[2])
            x3 = self.bag(x_low[3], x_high[3], x[3])

        # 合并处理后的特征
        x = torch.cat((x0, x1, x2, x3), dim=1)

        # 尾部卷积和跳跃连接
        x = self.tail_conv(x)
        x += x_skip

        # 批量归一化和激活函数
        x = self.bns(x)
        x = self.relu(x)

        return x

YOLO26引入代码

在根目录下的ultralytics/nn/目录,新建一个attention目录,然后新建一个以 DASI为文件名的py文件, 把代码拷贝进去。

相关文章
|
7天前
|
JSON API 数据格式
OpenCode入门使用教程
本教程介绍如何通过安装OpenCode并配置Canopy Wave API来使用开源模型。首先全局安装OpenCode,然后设置API密钥并创建配置文件,最后在控制台中连接模型并开始交互。
3173 7
|
13天前
|
人工智能 JavaScript Linux
【Claude Code 全攻略】终端AI编程助手从入门到进阶(2026最新版)
Claude Code是Anthropic推出的终端原生AI编程助手,支持40+语言、200k超长上下文,无需切换IDE即可实现代码生成、调试、项目导航与自动化任务。本文详解其安装配置、四大核心功能及进阶技巧,助你全面提升开发效率,搭配GitHub Copilot使用更佳。
|
3天前
|
人工智能 API 开发者
Claude Code 国内保姆级使用指南:实测 GLM-4.7 与 Claude Opus 4.5 全方案解
Claude Code是Anthropic推出的编程AI代理工具。2026年国内开发者可通过配置`ANTHROPIC_BASE_URL`实现本地化接入:①极速平替——用Qwen Code v0.5.0或GLM-4.7,毫秒响应,适合日常编码;②满血原版——经灵芽API中转调用Claude Opus 4.5,胜任复杂架构与深度推理。
|
15天前
|
存储 人工智能 自然语言处理
OpenSpec技术规范+实例应用
OpenSpec 是面向 AI 智能体的轻量级规范驱动开发框架,通过“提案-审查-实施-归档”工作流,解决 AI 编程中的需求偏移与不可预测性问题。它以机器可读的规范为“单一真相源”,将模糊提示转化为可落地的工程实践,助力开发者高效构建稳定、可审计的生产级系统,实现从“凭感觉聊天”到“按规范开发”的跃迁。
2239 18
|
7天前
|
人工智能 前端开发 Docker
Huobao Drama 开源短剧生成平台:从剧本到视频
Huobao Drama 是一个基于 Go + Vue3 的开源 AI 短剧自动化生成平台,支持剧本解析、角色与分镜生成、图生视频及剪辑合成,覆盖短剧生产全链路。内置角色管理、分镜设计、视频合成、任务追踪等功能,支持本地部署与多模型接入(如 OpenAI、Ollama、火山等),搭配 FFmpeg 实现高效视频处理,适用于短剧工作流验证与自建 AI 创作后台。
1122 5
|
6天前
|
人工智能 运维 前端开发
Claude Code 30k+ star官方插件,小白也能写专业级代码
Superpowers是Claude Code官方插件,由核心开发者Jesse打造,上线3个月获3万star。它集成brainstorming、TDD、系统化调试等专业开发流程,让AI写代码更规范高效。开源免费,安装简单,实测显著提升开发质量与效率,值得开发者尝试。
|
17天前
|
人工智能 测试技术 开发者
AI Coding后端开发实战:解锁AI辅助编程新范式
本文系统阐述了AI时代开发者如何高效协作AI Coding工具,强调破除认知误区、构建个人上下文管理体系,并精准判断AI输出质量。通过实战流程与案例,助力开发者实现从编码到架构思维的跃迁,成为人机协同的“超级开发者”。
1268 102
|
13天前
|
人工智能 JSON 自然语言处理
【2026最新最全】一篇文章带你学会Qoder编辑器
Qoder是一款面向程序员的AI编程助手,集智能补全、对话式编程、项目级理解、任务模式与规则驱动于一体,支持模型分级选择与CLI命令行操作,可自动生成文档、优化提示词,提升开发效率。
1004 10
【2026最新最全】一篇文章带你学会Qoder编辑器