YOLO26改进 - 注意力机制 | 多扩张通道细化器MDCR 通过通道划分与异构扩张卷积提升小目标定位能力

简介: 本文介绍了一种在YOLO26目标检测模型中引入高效解码器模块EMCAD的创新方法,以提升模型在资源受限场景下的性能与效率。EMCAD由多个模块构成,其中核心的EUCB(高效上卷积块)通过上采样、深度可分离卷积、激活归一化和通道调整等操作,兼顾了特征质量与计算成本。实验结果显示,该模块在显著减少参数与FLOPs的同时仍具备优异性能。文章还提供了完整的YOLO26模型集成流程、配置和训练实战。

前言

本文介绍了一种在YOLO26目标检测模型中引入高效解码器模块EMCAD的创新方法,以提升模型在资源受限场景下的性能与效率。EMCAD由多个模块构成,其中核心的EUCB(高效上卷积块)通过上采样、深度可分离卷积、激活归一化和通道调整等操作,兼顾了特征质量与计算成本。实验结果显示,该模块在显著减少参数与FLOPs的同时仍具备优异性能。文章还提供了完整的YOLO26模型集成流程、配置和训练实战。

文章目录: YOLO26改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总

专栏链接: YOLO26改进专栏

@[TOC]

介绍

image-20240701160512143

摘要

红外小目标检测作为计算机视觉领域的一项关键任务,旨在识别并定位红外图像中的微小目标,这些目标往往仅有几个像素大小。然而,由于目标体积微小且红外图像背景通常较为复杂,该任务面临着诸多挑战。本文提出了一种深度学习方法HCF - Net,借助多个实用模块显著提高了红外小目标检测的性能。具体来讲,该方法包含并行化的感知补丁注意力(PPA)模块、维度感知选择性融合(DASI)模块和多膨胀通道优化(MDCR)模块。PPA模块采用多分支特征提取策略来捕获不同尺度和层次的特征信息;DASI模块实现了自适应的通道选择与融合;MDCR模块通过多层深度可分离卷积捕捉不同感受野范围的空间特征。大量实验结果显示,在SIRST红外单帧图像数据集上,所提出的HCF - Net表现卓越,超越了其他传统模型和深度学习模型。代码可从https://github.com/zhengshuchen/HCFNet获取。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

HCF-Net(Hierarchical Context Fusion Network)是一种用于红外小目标检测的深度学习模型,旨在提高对红外图像中微小目标的识别和定位能力。

  1. 网络架构:HCF-Net采用了一种升级版的U-Net架构,主要由三个关键模块组成:Parallelized Patch-Aware Attention(PPA)模块、Dimension-Aware Selective Integration(DASI)模块和Multi-Dilated Channel Refiner(MDCR)模块。这些模块在不同层级上解决了红外小目标检测中的挑战 。

  2. PPA模块

    • Hierarchical Feature Fusion:PPA模块利用分层特征融合和注意力机制,以在多次下采样过程中保持和增强小目标的表示,确保关键信息在整个网络中得以保留[T1]。
    • Multi-Branch Feature Extraction:PPA采用多分支特征提取策略,以捕获不同尺度和级别的特征信息,从而提高小目标检测的准确性 。
  3. DASI模块

    • Adaptive Feature Fusion:DASI模块增强了U-Net中的跳跃连接,专注于高低维特征的自适应选择和精细融合,以增强小目标的显著性 。
  4. MDCR模块

    • Spatial Feature Refinement:MDCR模块通过多个深度可分离卷积层捕获不同感受野范围的空间特征,更细致地建模目标和背景之间的差异,提高了定位小目标的能力 。

image-20240701161043152

Multi-Dilated Channel Refiner(MDCR)模块是HCF-Net中的关键组成部分,旨在增强网络对红外小目标检测的特征表示和区分能力。

  1. MDCR模块的目的:MDCR模块旨在通过采用多种扩张率的深度可分离卷积层,捕获不同感受野大小的空间特征,从而实现对目标和背景之间差异的详细建模,提升网络有效区分小目标的能力 。

  2. MDCR模块的结构

    • 输入特征的划分:MDCR模块将输入特征F_a沿通道维度划分为四个独立的头部,生成对应的(a_i),其中i从1到4。每个头部对应特定的特征集合 。
    • 深度可分离扩张卷积:每个头部经历独立的深度可分离扩张卷积,具有不同的扩张率,最终生成(a'_i),其中i从1到4。这些卷积的扩张率分别标记为d1、d2、d3和d4 。
    • 特征增强:通过对各个头部应用深度可分离扩张卷积,MDCR模块增强了特征表示和网络的区分能力 。
  3. MDCR模块的有效性

    • 捕获空间特征:MDCR模块在不同感受野范围内捕获空间特征,使网络更好地理解红外图像中目标的上下文和细节 。
    • 区分小目标:通过利用具有不同扩张率的多个深度可分离卷积层,MDCR模块增强了网络区分小目标和背景的能力,提高了检测性能 。

    如下图所示MDCR沿着通道维度将输入特征$\mathbf{F}_{a}\in\mathbb{R}^{H\times W\times C}$分成四个不同的头,生成$(\mathbf{a}i){i=1}^4\in\mathbb{R}^{H\times W\times\frac{C}{4}}$。然后,每个头部以不同的扩张率分别进行深度可分离的扩张卷积,得到$(\mathbf{a}^{\prime}i){i=1}^4\in\mathbb{R}^{H\times W\times\frac{C}{4}}$。将卷积扩张率分别命名为$d1、d2、d3$和$d4$。

    $$\mathbf{a}_i^{\prime}=DDWConv(\mathbf{a}_i),$$

    其中,$\mathbf{a}_i^{\prime}$表示对第$i$个头部进行深度可分离扩张卷积后获得的特征。操作$DDWConv()$表示深度可分离扩张卷积,$i$取值为1、2、3、4。

    MDCR通过通道分割和重组来增强特征表示。具体来说,我们将$\mathbf{a'}i$分割成单个通道,从而得到每个头部的$(\mathbf{a}^{j}{i})_{j=1}^{\frac{C}{4}}\in\mathbb{R}^{H\times W\times1}$。然后,我们将这些通道交错排列,形成$(\mathbf{h}j){j=1}^{\frac{C}{4}}\in\mathbb{R}^{H\times W\times4}$,从而增强多尺度特征的多样性。随后,我们使用点式卷积法进行组间和跨组信息融合,得到输出$\mathbf{F}_{o}\in\mathbb{R}^{H\times W\times C}$,实现轻量高效的聚合效果。

    $$\mathbf{h}_j=Winner([\mathbf{a}^j_1, \mathbf{a}^j_2, \mathbf{a}^j_3, \mathbf{a}^j_4]), \mathbf{F}_{o}=\delta(B(W_{outer}([\mathbf{h}_1, \mathbf{h}_2, \ldots, \mathbf{h}_j])))$$

    其中,$W{inner}$和$W{outer}$是用于点卷积的权重矩阵。这里,$\mathbf{a}^j_i$表示第$i$个头的第$j$个通道,而$\mathbf{h}_j$表示第$j$组特征。$i \in {1, 2, 3, 4}$,$j \in {1, 2, \ldots, \frac{C}{4}}$。函数$\delta()$和$\mathcal{B}()$分别对应于整流线性单元(ReLU)和批量归一化(BN)。


image-20240701161122511

核心代码

class MDCR(nn.Module):
    def __init__(self, in_features, out_features, norm_type='bn', activation=True, rate=[1, 6, 12, 18]):
        super().__init__()

        # 定义四个卷积块,每个块使用不同的扩张率进行深度可分离卷积
        self.block1 = conv_block(
            in_features=in_features//4,
            out_features=out_features//4,
            padding=rate[0],
            dilation=rate[0],
            norm_type=norm_type,
            activation=activation,
            groups=128
        )
        self.block2 = conv_block(
            in_features=in_features//4,
            out_features=out_features//4,
            padding=rate[1],
            dilation=rate[1],
            norm_type=norm_type,
            activation=activation,
            groups=128
        )
        self.block3 = conv_block(
            in_features=in_features//4,
            out_features=out_features//4,
            padding=rate[2],
            dilation=rate[2],
            norm_type=norm_type,
            activation=activation,
            groups=128
        )
        self.block4 = conv_block(
            in_features=in_features//4,
            out_features=out_features//4,
            padding=rate[3],
            dilation=rate[3],
            norm_type=norm_type,
            activation=activation,
            groups=128
        )

        # 定义输出的尺寸调整卷积块和最终输出卷积块
        self.out_s = conv_block(
            in_features=4,
            out_features=4,
            kernel_size=(1, 1),
            padding=(0, 0),
            norm_type=norm_type,
            activation=activation,
        )
        self.out = conv_block(
            in_features=out_features,
            out_features=out_features,
            kernel_size=(1, 1),
            padding=(0, 0),
            norm_type=norm_type,
            activation=activation,
        )

    def forward(self, x):
        split_tensors = []
        x = torch.chunk(x, 4, dim=1)  # 沿通道维度将输入张量分成四个部分
        x1 = self.block1(x[0])
        x2 = self.block2(x[1])
        x3 = self.block3(x[2])
        x4 = self.block4(x[3])

        # 对每个通道进行操作,拼接和处理
        for channel in range(x1.size(1)):
            channel_tensors = [tensor[:, channel:channel + 1, :, :] for tensor in [x1, x2, x3, x4]]
            concatenated_channel = self.out_s(torch.cat(channel_tensors, dim=1))  # 在通道维度上拼接
            split_tensors.append(concatenated_channel)

        x = torch.cat(split_tensors, dim=1)  # 沿通道维度拼接
        x = self.out(x)  # 最终输出
        return x

YOLO26引入代码

在根目录下的ultralytics/nn/目录,新建一个attention目录,然后新建一个以 MDCR为文件名的py文件, 把代码拷贝进去。

相关文章
|
7天前
|
JSON API 数据格式
OpenCode入门使用教程
本教程介绍如何通过安装OpenCode并配置Canopy Wave API来使用开源模型。首先全局安装OpenCode,然后设置API密钥并创建配置文件,最后在控制台中连接模型并开始交互。
3173 7
|
13天前
|
人工智能 JavaScript Linux
【Claude Code 全攻略】终端AI编程助手从入门到进阶(2026最新版)
Claude Code是Anthropic推出的终端原生AI编程助手,支持40+语言、200k超长上下文,无需切换IDE即可实现代码生成、调试、项目导航与自动化任务。本文详解其安装配置、四大核心功能及进阶技巧,助你全面提升开发效率,搭配GitHub Copilot使用更佳。
|
3天前
|
人工智能 API 开发者
Claude Code 国内保姆级使用指南:实测 GLM-4.7 与 Claude Opus 4.5 全方案解
Claude Code是Anthropic推出的编程AI代理工具。2026年国内开发者可通过配置`ANTHROPIC_BASE_URL`实现本地化接入:①极速平替——用Qwen Code v0.5.0或GLM-4.7,毫秒响应,适合日常编码;②满血原版——经灵芽API中转调用Claude Opus 4.5,胜任复杂架构与深度推理。
|
15天前
|
存储 人工智能 自然语言处理
OpenSpec技术规范+实例应用
OpenSpec 是面向 AI 智能体的轻量级规范驱动开发框架,通过“提案-审查-实施-归档”工作流,解决 AI 编程中的需求偏移与不可预测性问题。它以机器可读的规范为“单一真相源”,将模糊提示转化为可落地的工程实践,助力开发者高效构建稳定、可审计的生产级系统,实现从“凭感觉聊天”到“按规范开发”的跃迁。
2239 18
|
7天前
|
人工智能 前端开发 Docker
Huobao Drama 开源短剧生成平台:从剧本到视频
Huobao Drama 是一个基于 Go + Vue3 的开源 AI 短剧自动化生成平台,支持剧本解析、角色与分镜生成、图生视频及剪辑合成,覆盖短剧生产全链路。内置角色管理、分镜设计、视频合成、任务追踪等功能,支持本地部署与多模型接入(如 OpenAI、Ollama、火山等),搭配 FFmpeg 实现高效视频处理,适用于短剧工作流验证与自建 AI 创作后台。
1122 5
|
6天前
|
人工智能 运维 前端开发
Claude Code 30k+ star官方插件,小白也能写专业级代码
Superpowers是Claude Code官方插件,由核心开发者Jesse打造,上线3个月获3万star。它集成brainstorming、TDD、系统化调试等专业开发流程,让AI写代码更规范高效。开源免费,安装简单,实测显著提升开发质量与效率,值得开发者尝试。
|
17天前
|
人工智能 测试技术 开发者
AI Coding后端开发实战:解锁AI辅助编程新范式
本文系统阐述了AI时代开发者如何高效协作AI Coding工具,强调破除认知误区、构建个人上下文管理体系,并精准判断AI输出质量。通过实战流程与案例,助力开发者实现从编码到架构思维的跃迁,成为人机协同的“超级开发者”。
1268 102
|
13天前
|
人工智能 JSON 自然语言处理
【2026最新最全】一篇文章带你学会Qoder编辑器
Qoder是一款面向程序员的AI编程助手,集智能补全、对话式编程、项目级理解、任务模式与规则驱动于一体,支持模型分级选择与CLI命令行操作,可自动生成文档、优化提示词,提升开发效率。
1004 10
【2026最新最全】一篇文章带你学会Qoder编辑器