用 PydanticAI 让 LLM 输出变成可信赖的 Python 对象

简介: 本文介绍PydanticAI——专治LLM输出“差不多但不对”的类型安全方案。它将AI响应直接转为经验证的Python对象,杜绝字段错、类型乱、key多等顽疾;与CrewAI深度协同,前者保障数据契约,后者专注任务编排,显著提升Agent系统稳定性与可维护性。

构建过 AI agent 的人大概都遇到过这种情况:LLM 返回的数据"差不多"是你要的但又不完全对。比如会遇到字段名拼错了数据类型不对,或者干脆多了几个莫名其妙的 key。

这是问题出在哪?当前主流的 agentic AI 系统处理输出的方式太原始了,比如说脆弱的 JSON 解析、基于 prompt 的 schema 约束、各种后处理 hack。这套东西在 demo 里能跑通,到了生产环境就是定时炸弹。

PydanticAI 提供了一个根本性的解决方案:类型安全的 LLM 响应。它能把 AI 输出直接转换成经过验证的 Python 对象,配合 CrewAI 这类 agent 框架使用效果是相当不错的。

本文会介绍 PydanticAI 的核心概念,解释为什么类型化响应对 agent 系统如此重要并给出与 CrewAI 集成的实际代码示例。

LLM 输出的核心问题

Agentic 框架功能很强,但在最基础的环节:数据契约上,表现得相当糟糕。

典型的 agent 开发流程是这样的:先让 LLM 返回 JSON,然后祈祷它遵循你定义的 schema,不行就加重试逻辑,最后发现还是得手写验证器。这套流程走下来,agent 变得不稳定,失败时没有任何提示,调试起来痛苦万分。

类型化系统正是为了解决这个问题而存在的。

PydanticAI 是什么


PydanticAI 把 LLM、Python 类型系统和 Pydantic 模型组合在一起。核心理念很简单:LLM 响应必须符合预定义的 Python 类型,不符合就直接报错。

没有残缺数据,没有静默失败,没有靠猜。

为什么 CrewAI 需要这个

CrewAI 的强项在于多 agent 协调、角色分配和任务分解。但 agent 之间的数据传递、工具调用、记忆持久化,都需要结构化输出作为基础。这正是 PydanticAI 填补的空白——它提供了一个可靠的契约层。

安装

 pip install pydantic-ai crewai openai

设置 OpenAI API key:

 export OPENAI_API_KEY="your-key"

第一个示例:类型化响应

从最简单的场景开始。

定义一个响应模型:

 from pydantic import BaseModel  

 class Summary(BaseModel):  
     title: str  
     key_points: list[str]  
     confidence: float

这不是注释或文档,这是硬性契约。

创建 agent:

 from pydantic_ai import Agent  
from pydantic_ai.models.openai import OpenAIModel  

model = OpenAIModel("gpt-5-mini")  

agent = Agent(  
    model=model,  
    result_type=Summary  
 )

运行:

 result = agent.run_sync(  
     "Summarize the benefits of typed AI agents"  
 )  

 print(result.title)  
 print(result.key_points)  
 print(result.confidence)

这里发生了什么?LLM 被强制返回符合 Summary 结构的数据,验证自动进行,输出不合法会触发重试或直接失败。这才是可以上生产的 LLM 输出。

Agent 间的数据契约

来看一个更实际的例子:两个 agent 协作。

研究 agent:

 class ResearchResult(BaseModel):  
    topic: str  
    findings: list[str]  

research_agent = Agent(  
    model=model,  
    result_type=ResearchResult  
 )

写作 agent,负责消费研究 agent 的输出:

 class BlogDraft(BaseModel):  
    headline: str  
    sections: list[str]  

writer_agent = Agent(  
    model=model,  
    result_type=BlogDraft  
 )

协作流程:

 research = research_agent.run_sync(  
     "Research typed LLM outputs in AI agents"  
 )  

 draft = writer_agent.run_sync(  
     f"Write a blog using these findings: {research.findings}"  
 )

整个过程没有 JSON 解析,不用猜测 schema,Python 对象在 agent 之间直接流转。

与 CrewAI 集成

CrewAI 负责编排,PydanticAI 负责类型正确性,这种组合越来越常见。

 from crewai import Agent as CrewAgent, Task  

analysis_agent = CrewAgent(  
    role="Analyst",  
    goal="Generate structured insights"  
)  

task = Task(  
    description="Analyze market trends in AI tooling",  
    agent=analysis_agent  
 )

加入类型化执行层:

 typed_agent=Agent(  
     model=model,  
     result_type=ResearchResult  
 )  

 result=typed_agent.run_sync(task.description)

CrewAI 处理 agent 的角色和任务分配,PydanticAI 保证输出的结构正确。

类型化如何改变可靠性

没有类型约束的 agent 系统会出现各种问题:agent 凭空生成不存在的 key,下游步骤因为数据格式错误而静默失败,排查问题时无从下手。

用了 PydanticAI 之后,无效输出会被立即拒绝,重试自动触发,这样bug 在早期就会暴露出来。这其实是软件工程领域早就有的实践:API 用 schema 约束,数据库用约束条件,编译器做类型检查,Agentic AI 只不过是终于跟上了这个标准。

生产环境用例

PydanticAI 加 CrewAI 的组合适合这些场景:研究类 agent、内容生成流水线、数据提取任务、业务流程自动化、AI 辅助决策系统。只要你的应用对输出结构有要求,这套方案就值得考虑。

不过有几个做法应该避免:让 agent 返回原始字符串然后自己解析,用 eval() 处理 JSON(安全隐患太大),盲目相信"格式良好"的 prompt 能约束输出,在 agent 之间传递未经验证的数据。

类型化不是额外负担,是风险控制。

总结

Agentic AI 发展很快,但速度如果没有结构做支撑,系统就会变得脆弱。PydanticAI 把软件工程的类型规范带入了 LLM 系统,让 agent 更安全、更可预测、更容易扩展。

当 AI 输出变成真正的 Python 对象,agent 就不再只是 demo,而是可以正式投入使用的系统。
https://avoid.overfit.cn/post/2a20c5c4c1394c92a252a04388f8e26e

作者:Er.Muruganantham

目录
相关文章
|
7天前
|
JSON API 数据格式
OpenCode入门使用教程
本教程介绍如何通过安装OpenCode并配置Canopy Wave API来使用开源模型。首先全局安装OpenCode,然后设置API密钥并创建配置文件,最后在控制台中连接模型并开始交互。
3173 7
|
13天前
|
人工智能 JavaScript Linux
【Claude Code 全攻略】终端AI编程助手从入门到进阶(2026最新版)
Claude Code是Anthropic推出的终端原生AI编程助手,支持40+语言、200k超长上下文,无需切换IDE即可实现代码生成、调试、项目导航与自动化任务。本文详解其安装配置、四大核心功能及进阶技巧,助你全面提升开发效率,搭配GitHub Copilot使用更佳。
|
3天前
|
人工智能 API 开发者
Claude Code 国内保姆级使用指南:实测 GLM-4.7 与 Claude Opus 4.5 全方案解
Claude Code是Anthropic推出的编程AI代理工具。2026年国内开发者可通过配置`ANTHROPIC_BASE_URL`实现本地化接入:①极速平替——用Qwen Code v0.5.0或GLM-4.7,毫秒响应,适合日常编码;②满血原版——经灵芽API中转调用Claude Opus 4.5,胜任复杂架构与深度推理。
|
15天前
|
存储 人工智能 自然语言处理
OpenSpec技术规范+实例应用
OpenSpec 是面向 AI 智能体的轻量级规范驱动开发框架,通过“提案-审查-实施-归档”工作流,解决 AI 编程中的需求偏移与不可预测性问题。它以机器可读的规范为“单一真相源”,将模糊提示转化为可落地的工程实践,助力开发者高效构建稳定、可审计的生产级系统,实现从“凭感觉聊天”到“按规范开发”的跃迁。
2239 18
|
7天前
|
人工智能 前端开发 Docker
Huobao Drama 开源短剧生成平台:从剧本到视频
Huobao Drama 是一个基于 Go + Vue3 的开源 AI 短剧自动化生成平台,支持剧本解析、角色与分镜生成、图生视频及剪辑合成,覆盖短剧生产全链路。内置角色管理、分镜设计、视频合成、任务追踪等功能,支持本地部署与多模型接入(如 OpenAI、Ollama、火山等),搭配 FFmpeg 实现高效视频处理,适用于短剧工作流验证与自建 AI 创作后台。
1122 5
|
6天前
|
人工智能 运维 前端开发
Claude Code 30k+ star官方插件,小白也能写专业级代码
Superpowers是Claude Code官方插件,由核心开发者Jesse打造,上线3个月获3万star。它集成brainstorming、TDD、系统化调试等专业开发流程,让AI写代码更规范高效。开源免费,安装简单,实测显著提升开发质量与效率,值得开发者尝试。
|
17天前
|
人工智能 测试技术 开发者
AI Coding后端开发实战:解锁AI辅助编程新范式
本文系统阐述了AI时代开发者如何高效协作AI Coding工具,强调破除认知误区、构建个人上下文管理体系,并精准判断AI输出质量。通过实战流程与案例,助力开发者实现从编码到架构思维的跃迁,成为人机协同的“超级开发者”。
1268 102
|
13天前
|
人工智能 JSON 自然语言处理
【2026最新最全】一篇文章带你学会Qoder编辑器
Qoder是一款面向程序员的AI编程助手,集智能补全、对话式编程、项目级理解、任务模式与规则驱动于一体,支持模型分级选择与CLI命令行操作,可自动生成文档、优化提示词,提升开发效率。
1004 10
【2026最新最全】一篇文章带你学会Qoder编辑器