面向多租户云的 IO 智能诊断:从异常发现到分钟级定位

简介: 阿里云云监控 2.0 结合 SysOM 智能诊断功能围绕常见的 I/O 异常场景,构建了一套覆盖“异常检测—根因分析—修复建议”全链路的 I/O 一键诊断功能。

背景

随着云端业务规模的持续扩大,AI 训练数据、实时日志与多媒体资料等数据量呈现指数级增长,云存储因此逐渐成为主流选择,同时也带来了 I/O 请求量的快速上升。在共享式的多租户架构中,多个租户共同使用底层存储资源,高并发访问极易引发 I/O 资源争抢与性能瓶颈。此外,混合云与多云部署日益普及,数据在多个云环境之间频繁流动,而不同云服务商在存储策略与监控机制上的不一致,使得 I/O 类故障的定位与追溯变得更加复杂。为提升此类问题的处理效率,阿里云云监控 2.0 结合 SysOM 智能诊断功能围绕常见的 I/O 异常场景,构建了一套覆盖“异常检测—根因分析—修复建议”全链路的 I/O 一键诊断功能。

业务痛点解析

痛点一:用户难以准确判断 IO 异常类型

大多数用户对 IO 问题的具体类型缺乏清晰认知,例如往往搞不清当前是 IO 延迟升高、IO 吞吐被打满,还是其它类型的异常,导致很难主动选用对应的排障工具和方法,只能依靠运维专家介入排查,整体诊断效率偏低,人力投入也随之增加。IO 一键诊断聚焦 IO 延时偏高、流量异常、iowait 居高不下等高频场景,自动捕捉 IO 子系统的异常特征,帮助用户快速完成问题类型的判定。

痛点二:异常发生瞬间难以“抓现场”,取证不充分

传统监控系统通常只采集操作系统层面的通用 IO 指标,比如 await、util、tps、bps 等,并以指标突变作为告警条件。然而,当指标被检测到异常时,真实问题往往已经发生甚至结束,此时再想获取更细致的采样和上下文信息,往往为时已晚,关键线索已经流失,难以形成完整的诊断证据链。要做到有效定位,就必须尽可能在异常刚出现或仍在持续时就触发针对性采集,因此,快速识别并及时行动,是获取最佳诊断数据的关键。

痛点三:指标体系割裂,监控数据与诊断结论之间缺乏直连

现有监控往往仅提供一组相互独立的指标,彼此缺乏联动,也没有与具体 IO 故障类型建立直观映射。以 util(磁盘繁忙度)偏高为例,实际分析时还需参考 await 等多项指标,并结合设备的理论 iops、bps 上限进行综合判断。即便勉强推断出问题类型,接下来仍离不开对各种诊断工具的经验性操作,包括如何按照指标数值选择合适的采样区间、参数配置等。IO 一键诊断的设计目标,就是将这一串复杂的关联分析与工具选型过程封装在系统内部,对用户直接呈现整理好的诊断报告和结论。

解决方案

架构介绍

在阿里云云监控 2.0 中,SysOM 管控模块原本就支持对 IO 延迟异常、IO 量异常以及 iowait 高等问题开展诊断。不过,大部分客户并不希望在业务环境上长时间运行高频诊断程序,以免对生产带来干扰。因此,IO 一键诊断采用了“监控先行、按需抓取”的架构:在用户指定的诊断时间段内,系统定期读取 IO 监控指标,用于异常识别与问题圈定,一旦满足条件,再触发具体的子诊断工具进行深度分析并输出报告,构成一个从发现到定位的闭环流程。

考虑到不同业务类型对 IO 行为和性能阈值的容忍度不尽相同,如果强行规定统一的固定阈值,势必会导致误报大量增加或严重漏报。因此,IO 一键诊断引入“动态阈值”机制进行异常识别,其总体处理链路可以概括为:

  • 指标采集:定期从系统中抓取关键 IO 指标,如 await、util、tps、iops、qu-size、iowait 等。
  • 异常检测:当采集到的指标突破动态阈值,就将其标记为潜在异常。动态阈值的计算方法是整个检测环节的核心,后文会展开说明。
  • 自动诊断触发:依据异常的指标类型与特征,自动选择合适的诊断工具,并设置触发频率限制,避免频繁调用。
  • 结果处理与展示:对诊断输出进行归纳和可视化呈现,为用户提供导致问题的根本原因以及可执行的优化建议。

实现原理

指标采集机制

当用户在控制台启动 IO 一键诊断后,系统会按配置好的时间间隔(cycle 毫秒)循环读取 iowait、iops、bps、qusize、await、util 等一系列 IO 指标,并在每个周期对最新采集的数据做异常检测判断。

动态阈值计算

为了能在秒级甚至更细粒度下捕获 IO 突发、短时抖动等异常,必须将各类单一 IO 指标联动起来,从整体上刻画 IO 子系统的“正常波动区间”。动态阈值就是用来界定这一“正常区间”和“异常尖峰”的边界。其计算过程主要分为三层:基础阈值、补偿阈值和最小静态阈值。

基础阈值:刻画整体波动幅度

从时间序列的角度看,IO 指标在大多数时刻处于平稳运行状态,曲线起伏较小;当出现异常负载或者突发流量时,曲线会突然出现明显偏离均值的峰值。因此,首要任务是利用基础阈值,找出这些显著高于日常波动的“尖峰”。

实现策略是:使用一个滑动时间窗口持续观察数据点,在每个窗口中计算所有点相对于窗口平均值的“最大偏离量”,把这个偏离量记为该窗口的“瞬时波动值”;随后对连续多个窗口的“瞬时波动值”求平均,形成动态更新的“基础阈值”。随着新数据不断进入,该阈值也会自适应地调整,始终反映 IO 指标近期的真实波动特征。

补偿阈值:削弱基础阈值快速下降带来的误报

基础阈值曲线(如示意图中的黄色线条)虽然能够反映指标的总体波动情况,但在系统处于稳定期时,IO 指标通常只在很窄的一段区间内轻微波动,此时基础阈值可能随波动减弱而快速下降,容易让一些微小的正常抖动被误判为异常。因此,需要额外引入一个“补偿阈值”,叠加在基础阈值之上,对其下降速度进行一定缓冲,从而抑制误报。

具体逻辑是:当系统监测到基础阈值在一段时间内持续走低,可以认为当前进入了相对“安静”的常态阶段。此时先过滤明显噪声点,再在剩余的稳定数据里计算一个“常稳态补偿值”,以刻画这类稳定状态下的细小波动。补偿值尚未收敛前,先用当前窗口内出现过的最大基础阈值暂时代替,并在每个新窗口开始时重新计算。一旦基础阈值停止下降或开始回升,就意味着系统波动模式发生了变化,此时补偿机制会被重置,重新进入更宏观的观察期。

最小阈值:兜底的静态门槛

最小静态阈值可以理解为预先设定的“绝对下限”,是业务方能接受的最低告警基线。最终用于判定异常的阈值,是“最小静态阈值”和“动态调整阈值(基础阈值 + 补偿值)”之间的较大者。只有当指标既超过了日常波动的正常范围,又突破了业务底线时,才真正被视为异常事件。

此外,如果指标本身已经明显高于“最小静态阈值”,则无需再额外叠加常态补偿值,此时仅以基础阈值作为判断依据即可,将分析重点聚焦在更显著的异常波动上。

异常识别策略

在运行时,一旦采集到的某项 IO 指标值高于其对应的动态阈值,即可认为存在异常风险。虽然不同指标(如 iowait、util、iops 等)的判定逻辑略有差异,但整体遵从以下共通规则:

  • 确定告警基线:为每一类指标定义一条“警戒线”,其数值为“最小静态阈值”和“动态阈值”中的最大值,既考虑业务底线,也考虑历史波动范围。
  • 决定是否触发诊断:当监控值超过警戒线,同时满足一定的监测条件(如持续时间、触发次数等),就可以启动对应的诊断流程。
  • 持续更新模型:随着新数据不断加入,动态阈值会被持续修正,使其适配当前环境的正常波动模式,而非依赖一次性的静态配置。

智能诊断与频率控制

当系统确认存在 IO 异常后,一键诊断模块会自动调用相应的分析工具,抓取关键现场信息并进行自动化处理,帮助用户快速锁定问题。为避免过于频繁的诊断操作影响业务,系统通过以下两个参数对诊断频率进行约束:

  • 诊断冷静期(triggerInterval):规定两次诊断之间必须间隔的最短时间,用来避免在短时间内重复对同一类异常进行频繁扫描。
  • 异常累积阈值(reportInterval):设置触发诊断所需的异常累积条件。当该值为 0 时,只要异常满足冷静期结束的条件,就立即启动诊断;当该值为非 0 时,则需要在冷静期之后、限定时间窗口内出现一定次数的异常事件,才会真正触发。

根因分析

在完成现场数据采集之后,面对复杂多样的系统信息,如何从中筛选出与当前问题强相关的线索,是传统人工分析的难点。IO 一键诊断在工具层面内置了一套自动分析逻辑,能从采集结果中提炼结论,并以结构化信息的形式反馈给用户,包括但不限于:

  • IO Burst 场景:分析在异常时间段内各进程对 IO 的贡献度,在报告中标明最“耗 IO”的进程。对于写 buffer IO 而由内核 kworker 线程负责刷脏的情况,也能追溯到最初发起写入的用户进程。
  • IO 延迟异常:统计并展示异常区间内 IO 延迟的整体分布情况,标记延迟最高的路径(如对应的设备或文件/目录),帮助快速找到性能瓶颈所在。
  • iowait 异常偏高:记录和展示导致 iowait 偏高的关键进程,以及引发大量等待的具体原因(例如磁盘被占满、脏页刷写过慢等)。

案例分析

iowait 高

在某些场景下,业务反馈系统整体响应慢,通过监控发现 iowait 指标异常升高。借助 IO 一键诊断,可以直接定位到哪一个或哪些进程在大量等待磁盘 IO,以及每个进程累计等待的时间长度,并进一步分析等待背后的原因。

在示例案例中,诊断结果显示:业务写入量过大导致 IO 压力偏高,系统中脏页堆积,最终使业务进程 task_server 长时间阻塞在 IO 等待上。针对这种情况,报告建议谨慎下调 dirty_ratio、dirty_bytes 等内核参数,以减少一次性刷脏量,降低磁盘压力,从而缓解 iowait 过高问题。

IO延迟高

另一类常见问题是写 IO 的延迟持续走高。某用户通过基础监控发现写入延迟异常后,通过 IO 一键诊断进行进一步排查。

诊断报告指出,在问题发生期间,DiskBlockWrite 进程是主要的 IO 负载来源,并且耗时主要集中在刷脏阶段,也就是说核心瓶颈在于磁盘将缓存数据落盘的过程。依据这一结论,系统给出两类优化建议:一是调整业务逻辑,减少短时间内大量 buffer IO 的写入;二是通过适当调整 dirty_ratio、dirty_background_ratio 等参数,控制脏页生成和回写的节奏,从系统层面降低写 IO 延迟。

相关链接:

[1] IO 一键诊断

https://help.aliyun.com/zh/cms/cloudmonitor-2-0/io-key-diagnosis

[2] 云监控-ECS 洞察-SysOM 系统诊断

https://cmsnext.console.aliyun.com/next/region/cn-shanghai/workspace/default-cms-1808078950770264-cn-shanghai/app/host/host-sysom

[3] 操作系统控制台实例纳管

https://help.aliyun.com/zh/alinux/user-guide/system-management

相关文章
|
10天前
|
人工智能 JavaScript Linux
【Claude Code 全攻略】终端AI编程助手从入门到进阶(2026最新版)
Claude Code是Anthropic推出的终端原生AI编程助手,支持40+语言、200k超长上下文,无需切换IDE即可实现代码生成、调试、项目导航与自动化任务。本文详解其安装配置、四大核心功能及进阶技巧,助你全面提升开发效率,搭配GitHub Copilot使用更佳。
|
4天前
|
JSON API 数据格式
OpenCode入门使用教程
本教程介绍如何通过安装OpenCode并配置Canopy Wave API来使用开源模型。首先全局安装OpenCode,然后设置API密钥并创建配置文件,最后在控制台中连接模型并开始交互。
1890 6
|
12天前
|
存储 人工智能 自然语言处理
OpenSpec技术规范+实例应用
OpenSpec 是面向 AI 智能体的轻量级规范驱动开发框架,通过“提案-审查-实施-归档”工作流,解决 AI 编程中的需求偏移与不可预测性问题。它以机器可读的规范为“单一真相源”,将模糊提示转化为可落地的工程实践,助力开发者高效构建稳定、可审计的生产级系统,实现从“凭感觉聊天”到“按规范开发”的跃迁。
1895 18
|
10天前
|
人工智能 JavaScript 前端开发
【2026最新最全】一篇文章带你学会Cursor编程工具
本文介绍了Cursor的下载安装、账号注册、汉化设置、核心模式(Agent、Plan、Debug、Ask)及高阶功能,如@引用、@Doc文档库、@Browser自动化和Rules规则配置,助力开发者高效使用AI编程工具。
1349 7
|
14天前
|
IDE 开发工具 C语言
【2026最新】VS2026下载安装使用保姆级教程(附安装包+图文步骤)
Visual Studio 2026是微软推出的最新Windows专属IDE,启动更快、内存占用更低,支持C++、Python等开发。推荐免费的Community版,安装简便,适合初学者与个人开发者使用。
1353 13
|
10天前
|
人工智能 JSON 自然语言处理
【2026最新最全】一篇文章带你学会Qoder编辑器
Qoder是一款面向程序员的AI编程助手,集智能补全、对话式编程、项目级理解、任务模式与规则驱动于一体,支持模型分级选择与CLI命令行操作,可自动生成文档、优化提示词,提升开发效率。
822 10
【2026最新最全】一篇文章带你学会Qoder编辑器
|
14天前
|
人工智能 测试技术 开发者
AI Coding后端开发实战:解锁AI辅助编程新范式
本文系统阐述了AI时代开发者如何高效协作AI Coding工具,强调破除认知误区、构建个人上下文管理体系,并精准判断AI输出质量。通过实战流程与案例,助力开发者实现从编码到架构思维的跃迁,成为人机协同的“超级开发者”。
1103 96
|
8天前
|
云安全 安全
免费+限量+领云小宝周边!「阿里云2026云上安全健康体检」火热进行中!
诚邀您进行年度自检,发现潜在风险,守护云上业务连续稳健运行
1182 2