Apache Storm 官方文档 —— 分布式 RPC

简介:

原文链接    译者:魏勇

分布式 RPC(DRPC)的设计目标是充分利用 Storm 的计算能力实现高密度的并行实时计算。Storm 接收若干个函数参数作为输入流,然后通过 DRPC 输出这些函数调用的结果。严格来说,DRPC 并不能算作是 Storm 的一个特性,因为它只是一种基于 Storm 原语 (Stream、Spout、Bolt、Topology) 实现的计算模式。虽然可以将 DRPC 从 Storm 中打包出来作为一个独立的库,但是与 Storm 集成在一起显然更有用。

概述

DRPC 是通过一个 DRPC 服务端(DRPC server)来实现分布式 RPC 功能的。DRPC server 负责接收 RPC 请求,并将该请求发送到 Storm 中运行的 Topology,等待接收 Topology 发送的处理结果,并将该结果返回给发送请求的客户端。因此,从客户端的角度来说,DPRC 与普通的 RPC 调用并没有什么区别。例如,以下是一个使用参数 “http://twitter.com” 调用 “reach” 函数计算结果的例子:


DRPCClient client = new DRPCClient("drpc-host", 3772);
String result = client.execute("reach", "http://twitter.com");
AI 代码解读


下图是 DRPC 的原理示意图。

DRPC

客户端通过向 DRPC 服务器发送待执行函数的名称以及该函数的参数来获取处理结果。实现该函数的拓扑使用一个DRPCSpout 从 DRPC 服务器中接收一个函数调用流。DRPC 服务器会为每个函数调用都标记了一个唯一的 id。随后拓扑会执行函数来计算结果,并在拓扑的最后使用一个名为 ReturnResults 的 bolt 连接到 DRPC 服务器,根据函数调用的 id 来将函数调用的结果返回。

定义 DRPC 拓扑

可以直接使用普通的拓扑构造方法来构造 DRPC 拓扑,如下所示:


public static class ExclaimBolt extends BaseBasicBolt {
    public void execute(Tuple tuple, BasicOutputCollector collector) {
        String input = tuple.getString(1);
        collector.emit(new Values(tuple.getValue(0), input + "!"));
    }

    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("id", "result"));
    }
}
public static void main(String[] args) throws Exception {
    TopologyBuilder builder = new TopologyBuilder();
    // builder.setSpout(drpcSpout);
    // builder.setBolt(new ExclaimBolt(), 3);
    // submit(builder.createTopology());
}
AI 代码解读


本地模式 DRPC

DRPC 可以在本地模式下运行。以下是使用本地模式构造拓扑的例子:


LocalDRPC drpc = new LocalDRPC();
DRPCSpout spout = new DRPCSpout("exclamation", drpc);
builder.setSpout("drpc", spout);
builder.setBolt("exclaim", new ExclaimBolt(), 3)
        .shuffleGrouping("drpc");
builder.setBolt("return", new ReturnResults(), 3)
        .shuffleGrouping("exclaim");

LocalCluster cluster = new LocalCluster();
Config conf = new Config();
cluster.submitTopology("drpc-demo", conf, builder.createTopology());

// local mode 测试代码
System.out.println(drpc.execute("exclamation", "hello"));

cluster.shutdown();
drpc.shutdown();
AI 代码解读


在这种模式下,首先你会创建一个 LocalDPRC 对象,该对象会在进程中模拟一个 DRPC 服务器,其作用类似于LocalCluster 在进程中模拟 Storm 集群的功能。在定义好拓扑的各个组件之后,就可以使用 LocalCluster 来提交拓扑。在本地模式下 LocalDPRC 对象不会绑定到任何一个实际的端口,所以需要通过向 DRPCSpout 传入参数的方式来关联到拓扑中。

在启动拓扑后,你可以使用 execute 方法来完成 DRPC 调用。

远程模式 DRPC

在一个实际的集群中使用 DRPC 有以下三个步骤:

  1. 配置并启动 DRPC 服务器;
  2. 在集群的各个服务器上配置 DRPC 服务器的地址;
  3. 将 DRPC 拓扑提交到集群运行。

可以像 Nimbus、Supervisor 那样使用 storm 命令来启动 DRPC 服务器(注意,此 server 的基本配置,如 nimbus,ZooKeeper 等参数应该与 Storm 集群其他机器相同):


bin/storm drpc
AI 代码解读


接下来,你需要在集群的各个服务器上配置 DRPC 服务器的地址。这是为了让 DRPCSpout 了解从哪里获取函数调用的方法。可以通过编辑 storm.yaml 或者添加拓扑配置的方式实现配置。配置 storm.yaml 的方式类似于下面这样:


drpc.servers:
  - "drpc1.foo.com"
  - "drpc2.foo.com"
AI 代码解读


最后,你可以像其他拓扑一样使用 StormSubmitter 来启动拓扑。

以下是使用远程模式构造拓扑的一个例子:


TopologyBuilder builder = new TopologyBuilder();

DRPCSpout spout = new DRPCSpout("exclamation");
builder.setSpout("drpc", spout, 3);
builder.setBolt("exclaim", new ExclamationBolt(), 3)
        .shuffleGrouping("drpc");
builder.setBolt("return", new ReturnResults(), 7)
        .shuffleGrouping("exclaim");

Config conf = new Config();
conf.setNumWorkers(2);

StormSubmitter.submitTopology("drpc-demo", conf, builder.createTopology());
AI 代码解读


目录
打赏
0
0
0
0
153
分享
相关文章
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
462 33
The Past, Present and Future of Apache Flink
Apache Flink 2.0.0: 实时数据处理的新纪元
Apache Flink 2.0.0 正式发布!这是自 Flink 1.0 发布九年以来的首次重大更新,凝聚了社区两年的努力。此版本引入分离式状态管理、物化表、流批统一等创新功能,优化云原生环境下的资源利用与性能表现,并强化了对人工智能工作流的支持。同时,Flink 2.0 对 API 和配置进行了全面清理,移除了过时组件,为未来的发展奠定了坚实基础。感谢 165 位贡献者的辛勤付出,共同推动实时计算进入新纪元!
121 1
Apache Flink 2.0.0: 实时数据处理的新纪元
|
5月前
|
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
1192 13
Apache Flink 2.0-preview released
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
206 3
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。
您有一份 Apache Flink 社区年度报告请查收~
您有一份 Apache Flink 社区年度报告请查收~

热门文章

最新文章

推荐镜像

更多