多智能体强化学习(MARL)核心概念与算法概览

简介: 多智能体强化学习(MARL)研究多个智能体在共享环境中协同或竞争的决策问题。每个智能体拥有局部观测、独立策略,且环境因其他智能体的学习而动态变化,导致非平稳性、信用分配难、协调复杂等挑战。广泛应用包括交通控制、机器人协作、广告竞价等。常用方法如IQL、VDN、QMIX、MADDPG、MAPPO等,结合集中训练分布式执行(CTDE)提升稳定性。通过简单协调游戏可窥见MARL核心机制:智能体需在探索与协调间平衡,以涌现合作行为。

训练单个 RL 智能体的过程非常简单,那么我们现在换一个场景,同时训练五个智能体,而且每个都有自己的目标、只能看到部分信息,还能互相帮忙。

这就是多智能体强化学习(Multi-Agent Reinforcement Learning,MARL),但是这样会很快变得混乱。

什么是多智能体强化学习

MARL 是多个决策者(智能体)在同一环境中交互的强化学习。

环境类型可以很不一样。竞争性的,比如国际象棋,一方赢一方输。合作性的,比如团队运动,大家共享目标。还有混合型的,更像现实生活——现在是队友,过会儿可能是对手,有时候两者同时存在。

但是这里与一个关键的问题:从任何一个智能体的视角看世界变成了非平稳的,因为其他智能体也在学习、在改变行为。也就是说在学规则的时候,规则本身也在变。

MARL 在现实中的位置

单智能体 RL 适合系统只有一个"大脑"的情况,而MARL 则出现在世界有多个"大脑"的时候。

现实世界中有很多这样的案例,比如交通信号控制:每个路口是一个智能体,一个信号灯"贪婪"了,下游路口就会卡死;仓库机器人:每个机器人自己选路径,碰撞和拥堵天然是多智能体问题;广告竞价和市场:智能体用不断变化的策略争夺有限资源;网络安全:攻击者和防御者是相互适应的智能体对;在线游戏和模拟:协调、欺骗、配合、自我对弈——这些都是MARL 的经典试验场。

核心概念

大多数真实场景中,智能体只能看到状态的一部分。所以 MARL 里的策略通常基于局部观测,而不是完整的全局状态。

单智能体 RL 里环境动态是稳定的,而MARL 不一样"环境"包括其他智能体。它们在学习,你的转移动态也就跟着变了。

这正是经典的 Qlearn在多智能体环境里容易震荡、甚至崩溃的原因。

合作任务中团队拿到奖励,但功劳该算谁的?团队成功了,是智能体 2 的动作起了作用,还是智能体 5 在 10 步之前的作用?这就是信用分配问题,这是MARL 里最头疼的实际难题之一。

集中式与分布式

集中训练、分布式执行(CTDE)

这是目前最常见的模式。训练时智能体可以用额外信息,比如全局状态或其他智能体的动作。执行时每个智能体只根据自己的局部观测行动。

这样的好处是,既有集中学习的稳定性,又不需要在运行时获取不现实的全局信息。

完全分布式学习

智能体只从局部经验学习。这个听起来是对的,而且简单任务也能用。但实际中往往不够稳定,合作任务尤其如此。

算法总览

合作性基于价值的方法:Independent Q-Learning(IQL)是最简单的基线,容易实现但通常不稳定;VDN 和 QMIX 通过混合各智能体的价值来学全局团队价值,合作处理得更好。

策略梯度和 Actor-Critic 方法:MADDPG 用集中式 Critic 配分布式 Actor,概念上是很好的切入点;MAPPO 在很多合作任务里是靠谱的默认选择。

自我对弈(Self-play):和自己不同版本对打来建立泛化的策略。思路简单粗暴效果也很好。

用 Python 从零搭一个小 MARL 环境

来做个玩具游戏:两个智能体必须协调。经典设定——两者选同一个动作才有奖励。每个智能体选 0 或 1,动作一致拿 +1,不一致拿 0。

我们这里刻意设计得简单,这样方便我们聚焦在 MARL 机制本身。

 import random  
from collections import defaultdict  

class CoordinationGame:  
    def step(self, a0, a1):  
        reward = 1 if a0 == a1 else 0  
        done = True  # single-step episode  
         return reward, done

接下来是最小化的 Independent Q-Learning 设置,每个智能体学自己的 Q 表。这里没有状态,Q 只取决于动作。

 def epsilon_greedy(Q, eps=0.1):  
    if random.random() < eps:  
        return random.choice([0, 1])  
    return 0 if Q[0] >= Q[1] else 1  

Q0 = defaultdict(float)  # Q0[action]  
Q1 = defaultdict(float)  # Q1[action]  

alpha = 0.1  
eps = 0.2  
env = CoordinationGame()  

for episode in range(5000):  
    a0 = epsilon_greedy(Q0, eps)  
    a1 = epsilon_greedy(Q1, eps)  

    r, done = env.step(a0, a1)  

    # One-step update (no next-state)  
    Q0[a0] += alpha * (r - Q0[a0])  
    Q1[a1] += alpha * (r - Q1[a1])  

# Inspect learned preferences  
print("Agent0 Q:", dict(Q0))  
 print("Agent1 Q:", dict(Q1))

多数运行会收敛到两种"惯例"之一:两者都学会总是选 0,或者都学会总是选 1。

这就是协调从学习中涌现出来的样子。虽然小但和大型合作 MARL 系统里依赖的模式是同一类东西。

这个玩具例子太友好了。难一点的任务里,IQL 常常变得不稳定,因为每个智能体都在追一个移动靶。

让例子更"MARL"一点

常见技巧是加共享团队奖励,同时保证足够长的探索期来发现协调,下面是一个带衰减 epsilon 的训练循环:

 Q0 = defaultdict(float)  
Q1 = defaultdict(float)  

alpha = 0.1  
eps = 0.9  
eps_decay = 0.999  
eps_min = 0.05  

env = CoordinationGame()  

for episode in range(20000):  
    a0 = epsilon_greedy(Q0, eps)  
    a1 = epsilon_greedy(Q1, eps)  

    r, _ = env.step(a0, a1)  

    Q0[a0] += alpha * (r - Q0[a0])  
    Q1[a1] += alpha * (r - Q1[a1])  

    eps = max(eps_min, eps * eps_decay)  

print("Agent0 Q:", dict(Q0))  
 print("Agent1 Q:", dict(Q1))

这当然不会解决 MARL,但它演示了一个真实原则:早期探索帮助智能体"找到"一个稳定的协调惯例。

总结

一旦解决了单步协调问题,还会有三个问题会反复出现:

虚假学习信号:智能体可能觉得"是自己动作导致了奖励",实际上是另一个智能体的动作起了作用。

糟糕的均衡陷阱:在竞争性游戏里,智能体可能卡在稳定但不强的弱策略上。

规模爆炸:多智能体的状态和动作空间膨胀很快,需要更好的函数逼近(神经网络)、更好的训练方案(CTDE),通常还需要更讲究的环境设计。

应对这些问题没有万能解法,但有一些经过验证的思路。针对虚假学习信号,可以用 CTDE 架构让 Critic 看到全局信息,帮助每个智能体更准确地评估自己动作的贡献。均衡陷阱的问题,自我对弈加上一定的探索机制能帮智能体跳出局部最优。规模问题则需要参数共享、注意力机制等技术来降低复杂度。

实际项目中,建议先在概念上理解集中式 Critic 的工作原理,不用急着写完整的深度 RL 代码。这一步会改变你思考可观测性和稳定性的方式,后面上手具体算法会顺畅很多。

https://avoid.overfit.cn/post/56fb12fbb46e400180fad2999d533292

作者:Syntal

目录
相关文章
|
JavaScript
JS自动生成速记符、拼音简写/拼音的声母(例如:“你挚爱的强哥”转换为“NZADQG”)。提取首字母,返回大写形式;提取拼音, 返回首字母大写形式(全拼)。
JS自动生成速记符、拼音简写/拼音的声母(例如:“你挚爱的强哥”转换为“NZADQG”)。提取首字母,返回大写形式;提取拼音, 返回首字母大写形式(全拼)。
20983 0
|
22天前
|
数据采集 API 开发者
Python异步编程实战:用asyncio提升并发性能
Python异步编程实战:用asyncio提升并发性能
97 32
|
22天前
|
人工智能 自然语言处理
稀疏之美:MoE模型如何开启AI效率革命
稀疏之美:MoE模型如何开启AI效率革命
221 140
|
1月前
|
存储 缓存 调度
阿里云Tair KVCache仿真分析:高精度的计算和缓存模拟设计与实现
在大模型推理迈向“智能体时代”的今天,KVCache 已从性能优化手段升级为系统级基础设施,“显存内缓存”模式在长上下文、多轮交互等场景下难以为继,而“以存代算”的多级 KVCache 架构虽突破了容量瓶颈,却引入了一个由模型结构、硬件平台、推理引擎与缓存策略等因素交织而成的高维配置空间。如何在满足 SLO(如延迟、吞吐等服务等级目标)的前提下,找到“时延–吞吐–成本”的最优平衡点,成为规模化部署的核心挑战。
471 38
阿里云Tair KVCache仿真分析:高精度的计算和缓存模拟设计与实现
|
1月前
|
人工智能 安全 API
Nacos 安全护栏:MCP、Agent、配置全维防护,重塑 AI Registry 安全边界
Nacos安全新标杆:精细鉴权、无感灰度、全量审计!
715 69
|
22天前
|
安全 搜索推荐 测试技术
从零理解渗透测试:黑客技术的“方法论”
从零理解渗透测试:黑客技术的“方法论”
266 134
|
27天前
|
存储 人工智能 架构师
构建自己的AI编程助手:基于RAG的上下文感知实现方案
打造智能代码助手,远不止调用API。需构建专为代码设计的RAG系统:基于AST解析保障分块完整性,向量库实现语义检索,结合仓库地图提供全局结构,再通过推理链整合上下文。如此,AI才能真正理解代码,胜任重构、答疑等复杂任务,成为懂你项目的“资深工程师”。
121 7
构建自己的AI编程助手:基于RAG的上下文感知实现方案
|
1月前
|
人工智能 自然语言处理 API
数据合成篇|多轮ToolUse数据合成打造更可靠的AI导购助手
本文提出一种面向租赁导购场景的工具调用(Tool Use)训练数据合成方案,以支付宝芝麻租赁助理“小不懂”为例,通过“导演-演员”式多智能体框架生成拟真多轮对话。结合话题路径引导与动态角色交互,实现高质量、可扩展的合成数据生产,并构建“数据飞轮”推动模型持续优化。实验表明,该方法显著提升模型在复杂任务中的工具调用准确率与多轮理解能力。
297 43
数据合成篇|多轮ToolUse数据合成打造更可靠的AI导购助手
|
28天前
|
前端开发 算法
深度研究Agent架构解析:4种Agent架构介绍及实用Prompt模板
本文系统梳理了深度搜索Agent的主流架构演进:从基础的Planner-Only,到引入评估反馈的双模块设计,再到支持层次化分解的递归式ROMA方案。重点解析了问题拆解与终止判断两大核心挑战,并提供了实用的Prompt模板与优化策略,为构建高效搜索Agent提供清晰路径。
499 10
深度研究Agent架构解析:4种Agent架构介绍及实用Prompt模板