Sentinel工作原理

简介: Sentinel 是面向分布式服务架构的流量控制组件,以资源(如方法、URL)为核心,通过流量控制、熔断降级、系统负载保护等规则保障系统稳定。其采用轻量级设计,支持实时动态调整规则,并提供可扩展的插槽链机制,实现灵活的请求调控与系统防护。

Sentinel 基本概念

资源

资源是 Sentinel 的关键概念。它可以是 Java 应用程序中的任何内容,例如,由应用程序提供的服务,或由应用程序调用的其它应用提供的服务,甚至可以是一段代码。在接下来的文档中,我们都会用资源来描述代码块。

只要通过 Sentinel API 定义的代码,就是资源,能够被 Sentinel 保护起来。大部分情况下,可以使用方法签名,URL,甚至服务名称作为资源名来标示资源。

规则

围绕资源的实时状态设定的规则,可以包括流量控制规则、熔断降级规则以及系统保护规则。所有规则可以动态实时调整。

Sentinel 功能和设计理念

流量控制

流量控制在网络传输中是一个常用的概念,它用于调整网络包的发送数据。然而,从系统稳定性角度考虑,在处理请求的速度上,也有非常多的讲究。任意时间到来的请求往往是随机不可控的,而系统的处理能力是有限的。我们需要根据系统的处理能力对流量进行控制。Sentinel 作为一个调配器,可以根据需要把随机的请求调整成合适的形状,如下图所示:

流量控制有以下几个角度:

  • 资源的调用关系,例如资源的调用链路,资源和资源之间的关系;
  • 运行指标,例如 QPS、线程池、系统负载等;
  • 控制的效果,例如直接限流、冷启动、排队等。

Sentinel 的设计理念是让您自由选择控制的角度,并进行灵活组合,从而达到想要的效果。

熔断降级

什么是熔断降级

除了流量控制以外,降低调用链路中的不稳定资源也是 Sentinel 的使命之一。由于调用关系的复杂性,如果调用链路中的某个资源出现了不稳定,最终会导致请求发生堆积。这个问题和 Hystrix 里面描述的问题是一样的。

Sentinel 和 Hystrix 的原则是一致的: 当调用链路中某个资源出现不稳定,例如,表现为 timeout,异常比例升高的时候,则对这个资源的调用进行限制,并让请求快速失败,避免影响到其它的资源,最终产生雪崩的效果。

熔断降级设计理念

在限制的手段上,Sentinel 和 Hystrix 采取了完全不一样的方法。

Hystrix 通过线程池的方式,来对依赖(在我们的概念中对应资源)进行了隔离。这样做的好处是资源和资源之间做到了最彻底的隔离。缺点是除了增加了线程切换的成本,还需要预先给各个资源做线程池大小的分配。

Sentinel 对这个问题采取了两种手段:

  • 通过并发线程数进行限制

和资源池隔离的方法不同,Sentinel 通过限制资源并发线程的数量,来减少不稳定资源对其它资源的影响。这样不但没有线程切换的损耗,也不需要您预先分配线程池的大小。当某个资源出现不稳定的情况下,例如响应时间变长,对资源的直接影响就是会造成线程数的逐步堆积。当线程数在特定资源上堆积到一定的数量之后,对该资源的新请求就会被拒绝。堆积的线程完成任务后才开始继续接收请求。

  • 通过响应时间对资源进行降级

除了对并发线程数进行控制以外,Sentinel 还可以通过响应时间来快速降级不稳定的资源。当依赖的资源出现响应时间过长后,所有对该资源的访问都会被直接拒绝,直到过了指定的时间窗口之后才重新恢复。

系统负载保护

Sentinel 同时提供系统维度的自适应保护能力。防止雪崩,是系统防护中重要的一环。当系统负载较高的时候,如果还持续让请求进入,可能会导致系统崩溃,无法响应。在集群环境下,网络负载均衡会把本应这台机器承载的流量转发到其它的机器上去。如果这个时候其它的机器也处在一个边缘状态的时候,这个增加的流量就会导致这台机器也崩溃,最后导致整个集群不可用。

针对这个情况,Sentinel 提供了对应的保护机制,让系统的入口流量和系统的负载达到一个平衡,保证系统在能力范围之内处理最多的请求。

Sentinel 工作主流程

在 Sentinel 里面,所有的资源都对应一个资源名称以及一个 Entry。Entry 可以通过对主流框架的适配自动创建,也可以通过注解的方式或调用 API 显式创建;每一个 Entry 创建的时候,同时也会创建一系列功能插槽(slot chain)。这些插槽有不同的职责,例如:

  • NodeSelectorSlot 负责收集资源的路径,并将这些资源的调用路径,以树状结构存储起来,用于根据调用路径来限流降级;
  • ClusterBuilderSlot 则用于存储资源的统计信息以及调用者信息,例如该资源的 RT, QPS, thread count 等等,这些信息将用作为多维度限流,降级的依据;
  • StatisticSlot 则用于记录、统计不同纬度的 runtime 指标监控信息;
  • FlowSlot 则用于根据预设的限流规则以及前面 slot 统计的状态,来进行流量控制;
  • AuthoritySlot 则根据配置的黑白名单和调用来源信息,来做黑白名单控制;
  • DegradeSlot 则通过统计信息以及预设的规则,来做熔断降级;
  • SystemSlot 则通过系统的状态,例如 load1 等,来控制总的入口流量;

总体的框架如下:

Sentinel 将 ProcessorSlot 作为 SPI 接口进行扩展(1.7.2 版本以前 SlotChainBuilder 作为 SPI),使得 Slot Chain 具备了扩展的能力。您可以自行加入自定义的 slot 并编排 slot 间的顺序,从而可以给 Sentinel 添加自定义的功能。

更多

相关文章
4.Watcher机制(一)
本文深入分析Zookeeper的Watcher机制,涵盖核心类与源码实现。重点解析Watcher、Event、WatchedEvent等接口与类,阐述其在状态监听与事件通知中的作用,并结合ZKWatchManager管理机制,揭示数据变更时的Watcher触发流程。
 4.Watcher机制(一)
|
2月前
|
消息中间件 负载均衡 Linux
RabbitMQ部署指南
本文介绍RabbitMQ在CentOS7中基于Docker的单机与集群部署方案,涵盖镜像安装、DelayExchange插件配置、普通集群与镜像模式搭建,并详细演示仲裁队列使用及集群扩容方法,助力实现高可用消息队列服务。
 RabbitMQ部署指南
|
2月前
|
负载均衡 应用服务中间件 Nacos
Nacos配置中心
本文详细介绍如何使用Nacos实现微服务配置中心,涵盖配置管理、热更新、共享配置及优先级规则,并演示Nacos集群搭建与高可用部署,提升系统可维护性与稳定性。
 Nacos配置中心
|
29天前
|
机器学习/深度学习 人工智能 数据可视化
基于 YOLOv8 的共享单车乱停放智能识别系统— 从数据集构建到可视化部署的完整项目
基于YOLOv8的共享单车乱停放智能识别系统,涵盖数据采集、标注、模型训练到PyQt5可视化部署全流程。支持图片、视频、摄像头实时检测,具备高精度与强实用性,适用于智慧城管、园区管理及AI教学,提供完整源码与模型,开箱即用,助力毕业设计与工程落地。
111 0
基于 YOLOv8 的共享单车乱停放智能识别系统— 从数据集构建到可视化部署的完整项目
|
2月前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
544 155
|
JSON JavaScript 前端开发
JS动态加载以及JavaScript void(0)的爬虫解决方案
Intro 对于使用JS动态加载, 或者将下一页地址隐藏为JavaScript void(0)的网站, 如何爬取我们要的信息呢? 本文以Chrome浏览器为工具, 36Kr为示例网站, 使用 Json Handle 作为辅助信息解析工具, 演示如何抓取此类网站.
7029 0
|
存储 Prometheus Cloud Native
Prometheus实战--存储篇
Prometheus之于kubernetes(监控领域),如kubernetes之于容器编排。 随着heapster不再开发和维护以及influxdb 集群方案不再开源,heapster+influxdb的监控方案,只适合一些规模比较小的k8s集群。
5970 0
|
2月前
|
负载均衡 应用服务中间件 Nacos
Nacos配置中心
本文详细介绍Nacos作为配置中心的实现原理与实战应用,涵盖配置管理、热更新、共享配置及优先级规则,并演示集群搭建与高可用部署,提升微服务架构下配置的动态管理能力。
|
12月前
|
数据采集 Web App开发 存储
打造高效的Web Scraper:Python与Selenium的完美结合
本文介绍如何使用Python结合Selenium,通过代理IP、设置Cookie和User-Agent抓取BOSS直聘的招聘信息,包括公司名称、岗位、要求和薪资。这些数据可用于行业趋势、人才需求、企业动态及区域经济分析,为求职者、企业和分析师提供宝贵信息。文中详细说明了环境准备、代理配置、登录操作及数据抓取步骤,并提醒注意反爬虫机制和验证码处理等问题。
331 1
打造高效的Web Scraper:Python与Selenium的完美结合
|
搜索推荐 API 数据处理
什么是无代码?哪些人适合通过无代码来开发自己的业务系统
无代码是一种无需编程知识即可构建应用的方法。用户通过拖拽组件并设置参数,即可搭建功能完备的应用系统。其核心特点是普适性和包容性,降低了技术门槛,提供了直观界面,能快速响应需求变化,同时降低成本并具有一定的可扩展性。无代码适合一线业务人员、中小企业及专业技术人员使用,但在高度定制化、复杂逻辑处理或深度系统集成方面仍需传统开发。以草料二维码为例,无代码平台提供活码、表单、计划管理等功能,助力快速搭建各类应用系统,使每个人都能成为开发者。