Thread.sleep(0) 到底有什么用(读完就懂)

简介: Thread.Sleep用于暂停线程执行,Sleep(1000)不保证精确唤醒时间,因CPU调度受优先级和竞争影响;Sleep(0)则触发立即重新调度,让出CPU给其他线程,避免界面假死。二者作用显著不同。

我们可能经常会用到 Thread.Sleep 函数来吧使线程挂起一段时间。那么你有没有正确的理解这个函数的用法呢?
思考下面这两个问题:
假设现在是 2008-4-7 12:00:00.000,如果我调用一下 Thread.Sleep(1000) ,在 2008-4-7 12:00:01.000 的时候,这个线程会不会被唤醒?
某人的代码中用了一句看似莫明其妙的话:Thread.Sleep(0) 。既然是 Sleep 0 毫秒,那么他跟去掉这句代码相比,有啥区别么?
我们先回顾一下操作系统原理。
操作系统中,CPU竞争有很多种策略。Unix系统使用的是时间片算法,而Windows则属于抢占式的。
在时间片算法中,所有的进程排成一个队列。操作系统按照他们的顺序,给每个进程分配一段时间,即该进程允许运行的时间。如果在时间片结束时进程还在运行,则CPU将被剥夺并分配给另一个进程。如果进程在时间片结束前阻塞或结束,则CPU当即进行切换。调度程 序所要做的就是维护一张就绪进程列表,当进程用完它的时间片后,它被移到队列的末尾。
所谓抢占式操作系统,就是说如果一个进程得到了 CPU 时间,除非它自己放弃使用 CPU ,否则将完全霸占 CPU 。因此可以看出,在抢 占式操作系统中,操作系统假设所有的进程都是“人品很好”的,会主动退出 CPU 。
在抢占式操作系统中,假设有若干进程,操作系统会根据他们的优先级、饥饿时间(已经多长时间没有使用过 CPU 了),给他们算出一 个总的优先级来。操作系统就会把 CPU 交给总优先级最高的这个进程。当进程执行完毕或者自己主动挂起后,操作系统就会重新计算一 次所有进程的总优先级,然后再挑一个优先级最高的把 CPU 控制权交给他。
我们用分蛋糕的场景来描述这两种算法。假设有源源不断的蛋糕(源源不断的时间),一副刀叉(一个CPU),10个等待吃蛋糕的人(10 个进程)。
如果是 Unix操作系统来负责分蛋糕,那么他会这样定规矩:每个人上来吃 1 分钟,时间到了换下一个。最后一个人吃完了就再从头开始。于是,不管这10个人是不是优先级不同、饥饿程度不同、饭量不同,每个人上来的时候都可以吃 1 分钟。当然,如果有人本来不太饿,或者饭量小,吃了30秒钟之后就吃饱了,那么他可以跟操作系统说:我已经吃饱了(挂起)。于是操作系统就会让下一个人接着来。
如果是 Windows 操作系统来负责分蛋糕的,那么场面就很有意思了。他会这样定规矩:我会根据你们的优先级、饥饿程度去给你们每个人计算一个优先级。优先级最高的那个人,可以上来吃蛋糕——吃到你不想吃为止。等这个人吃完了,我再重新根据优先级、饥饿程度来计算每个人的优先级,然后再分给优先级最高的那个人。
这样看来,这个场面就有意思了——可能有些人是PPMM,因此具有高优先级,于是她就可以经常来吃蛋糕。可能另外一个人是个丑男,而去很ws,所以优先级特别低,于是好半天了才轮到他一次(因为随着时间的推移,他会越来越饥饿,因此算出来的总优先级就会越来越高,因此总有一天会轮到他的)。而且,如果一不小心让一个大胖子得到了刀叉,因为他饭量大,可能他会霸占着蛋糕连续吃很久很久,导致旁边的人在那里咽口水。。。
而且,还可能会有这种情况出现:操作系统现在计算出来的结果,5号PPMM总优先级最高,而且高出别人一大截。因此就叫5号来吃蛋糕。5号吃了一小会儿,觉得没那么饿了,于是说“我不吃了”(挂起)。因此操作系统就会重新计算所有人的优先级。因为5号刚刚吃过,因此她的饥饿程度变小了,于是总优先级变小了;而其他人因为多等了一会儿,饥饿程度都变大了,所以总优先级也变大了。不过这时候仍然有可能5号的优先级比别的都高,只不过现在只比其他的高一点点——但她仍然是总优先级最高的啊。因此操作系统就会说:5号mm上来吃蛋糕……(5号mm心里郁闷,这不刚吃过嘛……人家要减肥……谁叫你长那么漂亮,获得了那么高的优先级)。
那么,Thread.Sleep 函数是干吗的呢?还用刚才的分蛋糕的场景来描述。上面的场景里面,5号MM在吃了一次蛋糕之后,觉得已经有8分饱了,她觉得在未来的半个小时之内都不想再来吃蛋糕了,那么她就会跟操作系统说:在未来的半个小时之内不要再叫我上来吃蛋糕了。这样,操作系统在随后的半个小时里面重新计算所有人总优先级的时候,就会忽略5号mm。Sleep函数就是干这事的,他告诉操作系统“在未来的多少毫秒内我不参与CPU竞争”。
看完了 Thread.Sleep 的作用,我们再来想想文章开头的两个问题。
对于第一个问题,答案是:不一定。因为你只是告诉操作系统:在未来的1000毫秒内我不想再参与到CPU竞争。那么1000毫秒过去之后,这时候也许另外一个线程正在使用CPU,那么这时候操作系统是不会重新分配CPU的,直到那个线程挂起或结束;况且,即使这个时候恰巧轮到操作系统进行CPU 分配,那么当前线程也不一定就是总优先级最高的那个,CPU还是可能被其他线程抢占去。
与此相似的,Thread有个Resume函数,是用来唤醒挂起的线程的。好像上面所说的一样,这个函数只是“告诉操作系统我从现在起开始参与CPU竞争了”,这个函数的调用并不能马上使得这个线程获得CPU控制权。
对于第二个问题,答案是:有,而且区别很明显。假设我们刚才的分蛋糕场景里面,有另外一个PPMM 7号,她的优先级也非常非常高(因为非常非常漂亮),所以操作系统总是会叫道她来吃蛋糕。而且,7号也非常喜欢吃蛋糕,而且饭量也很大。不过,7号人品很好,她很善良,她没吃几口就会想:如果现在有别人比我更需要吃蛋糕,那么我就让给他。因此,她可以每吃几口就跟操作系统说:我们来重新计算一下所有人的总优先级吧。不过,操作系统不接受这个建议——因为操作系统不提供这个接口。于是7号mm就换了个说法:“在未来的0毫秒之内不要再叫我上来吃蛋糕了”。这个指令操作系统是接受的,于是此时操作系统就会重新计算大家的总优先级——注意这个时候是连7号一起计算的,因为“0毫秒已经过去了”嘛。因此如果没有比7号更需要吃蛋糕的人出现,那么下一次7号还是会被叫上来吃蛋糕。
因此,Thread.Sleep(0)的作用,就是“触发操作系统立刻重新进行一次CPU竞争”。竞争的结果也许是当前线程仍然获得CPU控制权,也许会换成别的线程获得CPU控制权。这也是我们在大循环里面经常会写一句Thread.Sleep(0) ,因为这样就给了其他线程比如Paint线程获得CPU控制权的权力,这样界面就不会假死在那里。
另外,虽然上面提到说“除非它自己放弃使用 CPU ,否则将完全霸占 CPU”,但这个行为仍然是受到制约的——操作系统会监控你霸占CPU的情况,如果发现某个线程长时间霸占CPU,会强制使这个线程挂起,因此在实际上不会出现“一个线程一直霸占着 CPU 不放”的情况。至于我们的大循环造成程序假死,并不是因为这个线程一直在霸占着CPU。实际上在这段时间操作系统已经进行过多次CPU竞争了,只不过其他线程在获得CPU控制权之后很短时间内马上就退出了,于是就又轮到了这个线程继续执行循环,于是就又用了很久才被操作系统强制挂起。。。因此反应到界面上,看起来就好像这个线程一直在霸占着CPU一样。

相关文章
|
2月前
|
人工智能 JSON 数据挖掘
大模型应用开发中MCP与Function Call的关系与区别
MCP与Function Call是大模型应用的两大关键技术。前者是跨模型的标准协议,实现多工具动态集成;后者是模型调用外部功能的机制。MCP构建通用连接桥梁,支持跨平台、热插拔与细粒度管控,适用于复杂企业场景;Function Call则轻量直接,适合单模型快速开发。二者可协同工作:模型通过Function Call解析意图,转为MCP标准请求调用工具,兼顾灵活性与扩展性。未来将趋向融合,形成“解析-传输-执行”分层架构,推动AI应用标准化发展。
|
2月前
|
监控 Java 测试技术
OOM排查之路:一次曲折的线上故障复盘
本文记录了一次线上服务因Paimon数据湖与RocksDB集成引发的三次内存溢出(OOM)故障排查全过程。通过MAT、NMT、async-profiler等工具,结合监控分析与专家协作,最终定位到RocksDB通过JNI申请的堆外内存未释放是根源。团队通过架构优化,改由Flink统一写入Paimon,彻底解决问题。文章系统梳理了排查思路与工具使用,为类似技术栈提供宝贵经验。
|
2月前
|
JSON Java 数据格式
SpringBoot使用汇总
本课程系统讲解Spring Boot核心知识,涵盖环境搭建、JSON处理、日志配置、全局异常处理、AOP切面编程及MyBatis、Redis等主流框架集成,并结合实际项目搭建完整开发架构,助你快速掌握微服务开发技能。
|
2月前
|
SQL Dubbo Java
线程池:故障梳理总结
本文从故障与技术双重视角,总结线程池满导致服务不可用的常见场景及解决方案。涵盖数据库慢查询、热更新、DDL锁表、连接池配置不当等问题,结合真实案例剖析根因,并提出fast-fail、流控背压、合理重试等最佳实践,助力开发者提升系统稳定性。
|
2月前
|
Java 测试技术 API
从Google线上故障,谈灰度发布的重要性
2025年6月12日,Google Cloud因未灰度发布的新功能引发空指针异常,导致全球服务中断超7小时。故障暴露了配置管理的重大隐患。本文深入分析根因,详解基于Nacos的IP与标签灰度发布方案,强调通过配置中心实现渐进式发布的必要性,为高可用系统提供实战指南。
|
2月前
|
运维 Devops 开发工具
生产环境缺陷管理
git-poison基于go-git实现,通过“投毒-解毒”机制在分布式环境中精准追溯、管理bug,避免多分支开发中bug修复遗漏问题。它不依赖人工沟通,自动卡点发布流程,有效阻塞带未修复bug的版本上线,已在大型团队落地一年,显著降低协同成本与生产风险。
|
2月前
|
Java 测试技术 Linux
生产环境发布管理
本文介绍大型团队如何通过自动化部署平台实现多环境(dev/test/pre/prod)高效发布与运维。涵盖各环境职责、基于Jenkins+K8S的CI/CD流程、分支管理、一键发布及回滚机制,并结合Skywalking实现日志链路追踪,提升问题定位与修复效率,助力企业级DevOps落地。
|
2月前
|
前端开发 安全 Java
自定义认证前端页面
本示例演示Spring Security基础配置:前端引入登录页,后端新增接口与安全配置。通过SecurityConfig实现请求认证、表单登录、自定义跳转等,启动后访问/demo/index自动跳转登录页,认证成功返回提示信息,完成权限控制验证。
|
2月前
|
安全 Java 开发工具
工程搭建与验证
本教程介绍如何搭建工程并整合SpringSecurity,通过引入依赖、启动验证,实现登录安全控制。默认账户为user,密码由系统生成并每次重启后变化。访问受保护路径将自动跳转至登录页,成功登录后重定向至原请求页面。完整代码详见GitHub仓库及指定分支。