负载均衡算法

简介: 本文介绍了五种负载均衡算法:随机、轮询、最小活跃数、源地址哈希与一致性哈希。涵盖其原理、适用场景及实现代码,重点解析加权随机、加权轮询的调度策略,强调根据服务状态动态分配请求,保障系统负载均衡与稳定性。

随机

调用关系如上图(简化了公网->防火墙处理),适合场景:所有服务器性能基本一致,且无超阈值流量。

private K doSelect(List<K> nodes, String ip) {
    // 在列表中随机选取一个节点
    int index = random.nextInt(nodes.size());
    return nodes.get(index);
}

如果存在部分机器性能更优,此时可以在随机基础上增加权重,升级为:随机权重算法。

private K doSelect(List<K> nodes, String ip) {
    int length = nodes.size();
    AtomicInteger totalWeight = new AtomicInteger(0);
    for (K node : nodes) {
        Integer weight = node.getWeight();
        totalWeight.getAndAdd(weight);
    }
    if (totalWeight.get() > 0) {
        int offset = random.nextInt(totalWeight.get());
        for (N node : nodes) {
            // 让随机值 offset 减去当前node权重值
            offset -= node.getWeight();
            if (offset < 0) {
                // 当前node大于随机值offset,返回此Node
                return node;
            }
        }
    }
    // 随机返回
    return nodes.get(random.nextInt(length));
}

轮询

轮询不再是在多台服务器随机挑选,而是按照顺序一个个排队调用,调用完再插入队尾等待下一次调用

protected K doSelect(List<K> nodes, String ip) {
    int length = nodes.size();
    // 如果位置值已经等于长度重置为0(走一轮了)
    position.compareAndSet(length, 0);
    N node = nodes.get(position.get());
    // 数据原子增加,对应调用从1->2->3->4
    position.getAndIncrement();
    return node;
}

同加权随机,轮询也同样存在加权轮询的场景,此时流量调度将发生如下变化:

此处逻辑相对复杂,笔者在此说出主要思路,后续有时间补充伪代码,感兴趣的可以参照Dubbo的实现

如上有服务器servers=[A,B],对应权重weights=[3,1],总权重为4。我们可以理解为有4台服务器,3台A,1台B,一次调用过来的时候,需要按顺序访问。如有5次调用,调用顺序为AAABA。

选举思路如下:

次数

WeightedRoundRobin

选择结果

选择后的WeightedRoundRobin

1

3、1

A

2、1

2

2、1

A

1、1

3

1、1

A

0、1

4

0、1

B

0、0(等于0-0时复原成:3、1)

5

3、1

A

2、1

最小活跃数

指:将当前请求转发到连接数/请求数最少的机器上,其特点是根据服务器实时运行状态动态分配,保障服务负载不会过饱和。如下图当请求4过来时,Nginx判断目前服务器1连接数>服务器2,故4会请求到服务器2上:

源地址哈希

根据请求源IP哈希计算得到一个数值,用该数值在候选服务器列表的进行取模运算,得到的结果便是选中的服务器,此操作可以保证固定IP的请求总是到某一台服务器上,伪代码如下:

private K doSelect(List<K> nodes, String ip) {
    int length = nodes.size();
    int index = hash(ip) % length;
    return nodes.get(index);
}

一致性哈希

相同的请求尽可能落到同一个服务器上。一致性哈希解决稳定性问题,可以将所有的存储节点排列在首尾相接的 Hash 环上,每个 key 在计算 Hash 后会 顺时针找到临接的存储节点存放。而当有节点加入或退出时,仅影响该节点在 Hash环上顺时针相邻的后续节点。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
3月前
|
人工智能 自然语言处理 数据安全/隐私保护
AI生成的文本:如何识破机器的“笔迹”?
AI生成的文本:如何识破机器的“笔迹”?
692 85
|
存储 缓存 数据可视化
基于Vue.js+Node问卷调查系统的设计与实现(二)
基于Vue.js+Node问卷调查系统的设计与实现
1019 1
基于Vue.js+Node问卷调查系统的设计与实现(二)
|
算法
【Simulink】极值搜索控制 Extremum Seeking Control(无模型控制)
【Simulink】极值搜索控制 Extremum Seeking Control(无模型控制)
|
Web App开发 移动开发 JavaScript
JS - 微信浏览器(H5)语音录音插件(Recorder H5)
JS - 微信浏览器(H5)语音录音插件(Recorder H5)
3323 0
|
5月前
|
存储 新零售 安全
阿里云盘企业版收费标准、功能支持、存储配置及用户数全解析
阿里云盘企业版提供高性价比存储方案,500GB仅需169元/年,支持协同办公、权限管理、智能文件管理、多重安全防护及卓越性能,适用于多行业企业高效办公。
958 0
|
5月前
|
机器学习/深度学习 Ubuntu 物联网
ubuntu和linux 什么关系?
综上所述,Ubuntu与Linux之间存在着紧密的关系。Ubuntu是基于Linux内核的操作系统发行版之一,它继承了Linux的开源精神,并在此基础上进行了定制和优化,以更好地适应桌面和服务器应用。同时,Ubuntu也受益于Linux社区的支持和贡献,为用户提供了丰富的软件和工具选择。对于想要了解和使用开源操作系统的用户来说,Ubuntu无疑是一个值得推荐的选择。
|
10月前
|
消息中间件 人工智能 安全
秒级灾备恢复:Kafka 2025 AI自愈集群下载及跨云Topic迁移终极教程
Apache Kafka 2025作为企业级实时数据中枢,实现五大革新:量子安全传输(CRYSTALS-Kyber抗量子加密算法)、联邦学习总线(支持TensorFlow Federated/Horizontal FL框架)、AI自愈集群(MTTR缩短至30秒内)、多模态数据处理(原生支持视频流、3D点云等)和跨云弹性扩展(AWS/GCP/Azure间自动迁移)。平台采用混合云基础设施矩阵与软件依赖拓扑设计,提供智能部署架构。安装流程涵盖抗量子安装包获取、量子密钥配置及联邦学习总线设置。
|
开发者 Python
基于Python的日志管理与最佳实践
日志是开发和调试过程中的重要工具,然而,如何高效地管理和利用日志常常被忽略。本文通过Python中的logging模块,探讨如何使用日志来进行调试、分析与问题排查,并提出了一些实际应用中的优化建议和最佳实践。

热门文章

最新文章