MongoDB相关概念

简介: MongoDB是一款高性能、无模式的文档型数据库,支持海量数据存储、水平扩展与高可用,适用于社交、游戏、物联网等读写频繁、事务要求不高的场景。采用BSON格式,数据结构灵活,开发运维成本低,是Web2.0时代理想的数据库解决方案。

MongoDB是一款高性能、无模式的文档型数据库,适用于数据量大、读写频繁、事务要求不高的场景。广泛应用于社交、游戏、物流、物联网和视频直播等领域,支持海量数据存储、水平扩展、高可用及复杂查询,尤其适合需要快速迭代和灵活数据模型的应用。相比MySQL,其开发运维成本更低,是Web2.0时代理想的数据存储解决方案。
1.1 业务应用场景
传统的关系型数据库(如MySQL),在数据操作的“三高”需求以及应对Web2.0的网站需求面前,显得力不从心。“三高”需求:
High performance - 对数据库高并发读写的需求。
Huge Storage - 对海量数据的高效率存储和访问的需求。
High Scalability && High Availability- 对数据库的高可扩展性和高可用性的需求。
MongoDB应用场景
社交场景:使用 MongoDB 存储存储用户信息,以及用户发表的朋友圈信息,通过地理位置索引实现附近的人、地点等功能。
游戏场景:使用 MongoDB 存储游戏用户信息,用户的装备、积分等直接以内嵌文档的形式存储,方便查询、高效率存储和访问。
物流场景:使用 MongoDB 存储订单信息,订单状态在运送过程中会不断更新,以 MongoDB 内嵌数组的形式来存储,一次查询就能将订单所有的变更读取出来。
物联网场景:使用 MongoDB 存储所有接入的智能设备信息,以及设备汇报的日志信息,并对这些信息进行多维度的分析。
视频直播:使用 MongoDB 存储用户信息、点赞互动信息等。
这些应用场景中,数据操作方面的共同特点是:
(1)数据量大
(2)写入操作频繁(读写都很频繁)
(3)价值较低的数据,对事务性要求不高
对于这样的数据,我们更适合使用MongoDB来实现数据的存储。
MongoDB什么时候用
在架构选型上,除了上述的三个特点外,如果你还犹豫是否要选择它?可以考虑以下的一些问题:
应用不需要事务及复杂 join 支持
新应用,需求会变,数据模型无法确定,想快速迭代开发
应用需要2000-3000以上的读写QPS(更高也可以)
应用需要TB甚至 PB 级别数据存储
应用发展迅速,需要能快速水平扩展
应用要求存储的数据不丢失
应用需要99.999%高可用
应用需要大量的地理位置查询、文本查询
如果上述有1个符合,可以考虑 MongoDB,2个及以上的符合,选择 MongoDB 绝不会后悔。
思考:如果用MySQL呢?
答:相对MySQL,可以以更低的成本解决问题(包括学习、开发、运维等成本)
1.2 MongoDB简介
MongoDB是一个开源、高性能、无模式的文档型数据库,当初的设计就是用于简化开发和方便扩展,是NoSQL数据库产品中的一种。是最像关系型数据库(MySQL)的非关系型数据库。
它支持的数据结构非常松散,是一种类似于 JSON 的格式叫BSON,所以它既可以存储比较复杂的数据类型,又相当的灵活。 MongoDB中的记录是一个文档,它是一个由字段和值对(field:value)组成的数据结构。MongoDB文档类似于JSON对象,即一个文档认为就是一个对象。字段的数据类型是字符型,它的值除了使用基本的一些类型外,还可以包括其他文档、普通数组和文档数组。
1.3 体系结构
mysql和mongodb的区别

SQL术语/概念 MongoDB术语/概念 解释/说明
database database 数据库
table collection 数据库表/集合
row document 数据记录行/文档
column field 数据字段/域
index index 索引
table joins 嵌入文档 表连接MongoDB不支持,通过嵌入式文档替代多表连接
primary key primary key 主键,MongoDB自动将_id字段设置为主键
1.4 数据模型
MongoDB的最小存储单位就是文档(document)对象。文档(document)对象对应于关系型数据库的行。数据在MongoDB中以BSON(Binary-JSON)文档的格式存储在磁盘上。
BSON(Binary Serialized Document Format)是一种类json的一种二进制形式的存储格式,简称Binary JSON。BSON和JSON一样,支持内嵌的文档对象和数组对象,但是BSON有JSON没有的一些数据类型,如Date和BinData类型。 BSON采用了类似于 C 语言结构体的名称、对表示方法,支持内嵌的文档对象和数组对象,具有轻量性、可遍历性、高效性的三个特点,可以有效描述非结构化数据和结构化数据。这种格式的优点是灵活性高,但它的缺点是空间利用率不是很理想。
Bson中,除了基本的JSON类型:string,integer,boolean,double,null,array和object,mongo还使用了特殊的数据类型。这些类型包括 date,object id,binary data,regular expression 和code。每一个驱动都以特定语言的方式实现了这些类型,查看你的驱动的文档来获取详细信息。
BSON数据类型参考列表:
数据类型 描述 举例
字符串 UTF-8字符串都可表示为字符串类型的数据 {"x" : "foobar"}
对象id 对象id是文档的12字节的唯一ID {"X" :ObjectId() }
布尔值 真或者假:true或者false {"x":true}+
数组 值的集合或者列表可以表示成数组 {"x" : ["a", "b", "c"]}
32位整数 类型不可用。JavaScript仅支持64位浮点数,所以32位整数会被自动转换。 shell是不支持该类型的,shell中默认会转换成64位浮点数
64位整数 不支持这个类型。shell会使用一个特殊的内嵌文档来显示64位整数 shell是不支持该类型的,shell中默认会转换成64位浮点数
64位浮点数 shell中的数字就是这一种类型 {"x":3.14159,"y":3}
null 表示空值或者未定义的对象 {"x":null}
undefined 文档中也可以使用未定义类型 {"x":undefined}
符号 shell不支持,shell会将数据库中的符号类型的数据自动转换成字符串
正则表达式 文档中可以包含正则表达式,采用JavaScript的正则表达式语法 {"x" : /foobar/i}
代码 文档中还可以包含JavaScript代码 {"x" : function() { / …… / }}
二进制数据 二进制数据可以由任意字节的串组成,不过shell中无法使用
1.5 MongoDB的特点
高性能
MongoDB提供高性能的数据持久性。特别对嵌入式数据模型的支持减少了数据库系统上的I/O活动。
索引支持更快的查询,并且可以包含来自嵌入式文档和数组的键。(文本索引解决搜索的需求、TTL索引解决历史数据自动过期的需求、地理位置索引可用于构建各种 O2O 应用) mmapv1、wiredtiger、mongorocks(rocksdb)、in-memory 等多引擎支持满足各种场景需求。 Gridfs解决文件存储的需求。
高可用性
MongoDB的复制工具称为副本集(replica set),它可提供自动故障转移和数据冗余。
高扩展性
MongoDB提供了水平可扩展性作为其核心功能的一部分。 分片将数据分布在一组集群的机器上。(海量数据存储,服务能力水平扩展) 从3.4开始,MongoDB支持基于片键创建数据区域。在一个平衡的集群中,MongoDB将一个区域所覆盖的读写只定向到该区域内的那些片。
丰富的查询支持
MongoDB支持丰富的查询语言,支持读和写操作(CRUD),比如数据聚合、文本搜索和地理空间查询等。

相关文章
|
存储 Linux Shell
linux基本功之历史记录history命令实战
linux基本功之历史记录history命令实战
963 0
linux基本功之历史记录history命令实战
|
4月前
|
IDE Java 编译器
Java基础阶段的常见错误和解决方案
2025年Java实操学习路线(增强版)涵盖环境搭建、Java 21核心特性及基础常见错误解析。系统讲解环境配置、语法、面向对象与异常处理等典型问题,配代码示例与解决方案,助你从入门进阶到高级应用,夯实编程根基。
525 0
|
数据采集 人工智能 搜索推荐
AI战略丨构建高效新一代 AI 应用:从技术选型到落地实践
从概念构想走向高效应用,新一代 AI 应用的落地过程涉及多重技术关键。
|
2月前
|
消息中间件 人工智能 决策智能
AgentScope x RocketMQ:构建多智能体应用组合
AgentScope是阿里巴巴推出的开发者友好型多智能体框架,支持模块化、可定制的智能体应用开发。通过集成RocketMQ,实现高效、可靠的A2A通信,助力构建如“智能旅行助手”等复杂协作场景,提升开发效率与系统可扩展性。(238字)
|
2月前
|
XML 算法 安全
详解RAG五种分块策略,技术原理、优劣对比与场景选型之道
RAG通过检索与生成结合,提升大模型在企业场景的准确性与安全性。分块策略是其核心,直接影响检索效果与生成质量。本文系统解析五种主流分块方法:固定大小、语义、递归、基于结构和基于LLM的分块,对比其优缺点及适用场景,助力构建高效、可信的RAG系统,尤其适用于金融、医疗等高精度领域。(239字)
|
2月前
|
消息中间件 人工智能 Linux
基于 RocketMQ 构建 高可靠 A2A 通信通道
A2A协议由Google于2025年发起,旨在构建跨厂商AI智能体的标准化通信机制。通过支持gRPC、JSON-RPC及RocketMQ异步通信,实现多智能体高效协同。基于RocketMQ的实现方案提供开箱即用的高可靠通信,支持任务分发、流式交互与状态查询,助力构建开放、可扩展的多智能体系统生态。(238字)
|
4月前
|
存储 监控 算法
117_LLM训练的高效分布式策略:从数据并行到ZeRO优化
在2025年,大型语言模型(LLM)的规模已经达到了数千亿甚至数万亿参数,训练这样的庞然大物需要先进的分布式训练技术支持。本文将深入探讨LLM训练中的高效分布式策略,从基础的数据并行到最先进的ZeRO优化技术,为读者提供全面且实用的技术指南。
|
7月前
|
人工智能 自然语言处理 搜索推荐
对话批改邦 | 从0到30万用户,如何抓住AI教育增长机遇
阿里云【AI访谈录】本期邀请AI创业者、批改邦创始人王庆棒,分享其团队如何通过AI技术打造教育场景下的教学助手。批改邦以作文批改切入教育行业,上线一年用户突破30万,付费转化率超30%。王庆棒围绕AI如何标准化主观评价、大模型在教育中的落地趋势、未来“杀手级AI应用”的形态等话题,分享一线实战经验。
595 0
|
8月前
|
运维 数据挖掘 数据处理
Pandas时间数据处理:从基础到进阶的实战指南
Pandas时间数据处理涵盖了从基础到高级的全面功能。其核心由Timestamp、DatetimeIndex、Period和Timedelta四个类构建,支持精准的时间点与区间操作。内容包括时间数据生成(字符串解析与序列生成)、时间索引与切片、高级运算(偏移重采样与窗口计算)、时区处理、周期性数据分析及实战案例(如智能电表数据)。此外,还涉及性能优化技巧和未来展望,帮助用户高效处理时间序列数据并应用于预测分析等场景。
368 1
|
JavaScript 前端开发 容器
this、self、window、top 在 JavaScript 中的区别深入研究
在 JavaScript 开发中,`this`、`self`、`window` 和 `top` 是四个常用的概念。`this` 指向当前执行上下文的对象,其值取决于函数调用方式;`self` 在全局作用域中等同于 `window`,常用于 Web Workers;`window` 代表浏览器窗口,是全局变量的容器;`top` 指向最顶层窗口,用于判断是否在框架中。理解这些概念有助于编写健壮的代码。
402 1
this、self、window、top 在 JavaScript 中的区别深入研究