⚡ 模型推理加速

简介: 大模型推理加速关键技术:KV-Cache减少重复计算,连续批处理提升吞吐,投机解码实现2-3倍加速,结合vLLM等工具优化部署。涵盖算法、系统与硬件协同设计,助力高效落地。

🎯 概述
推理加速是大模型落地的关键技术,涉及算法优化、系统优化和硬件加速等多个层面。
🏗️ 加速技术
1️⃣ KV-Cache优化
● 原理:缓存之前计算的键值对,避免重复计算
● 内存计算:$2 \times \text{batch_size} \times \text{seq_len} \times \text{num_layers} \times \text{hidden_size}$
● 优化策略:分页KV缓存、压缩KV缓存
2️⃣ 连续批处理 (Continuous Batching)
● 原理:动态批处理,提高GPU利用率
● 优势:减少padding,提升吞吐量
● 实现:ORCA、vLLM
3️⃣ 投机解码 (Speculative Decoding)
● 原理:小模型快速生成,大模型验证
● 加速比:2-3倍
● 条件:小模型质量足够高
4️⃣ 模型并行推理
● 张量并行:层内并行
● 流水线并行:层间并行
● 专家并行:MoE模型专用
5️⃣ vLLM/PagedAttention
受操作系统中经典虚拟内存和分页技术启发的注意力算法
📊 加速技术对比
技术 加速比 内存节省 实现复杂度 适用场景
KV-Cache 10-50x 中 低 所有场景
连续批处理 2-4x 高 中 高并发
投机解码 2-3x 无 高 低延迟
量化 2-4x 高 中 资源受限
🎯 实战优化

vLLM推理优化示例

from vllm import LLM, SamplingParams

连续批处理

llm = LLM(
model="meta-llama/Llama-2-7b-chat-hf",
tensor_parallel_size=2,
max_num_seqs=256
)

高效推理

sampling_params = SamplingParams(
temperature=0.7,
top_p=0.9,
max_tokens=512
)
🎯 面试重点

  1. KV-Cache的内存计算?
  2. 连续批处理vs传统批处理?
  3. 投机解码的适用条件?
  4. 如何平衡延迟和吞吐量?
相关文章
|
4月前
|
人工智能 运维 安全
阿里云函数计算 AgentRun 全新发布,构筑智能体时代的基础设施
云原生应用平台 Serverless 计算负责人杨皓然在云栖大会发表主题演讲“Serverless Agent 基础设施:助力大规模 Agent 部署与运维”。本议题深入介绍了阿里云以函数计算为核心打造的 Agent 基础设施——AgentRun,阐述其如何通过创新的运行时、模型服务、网关及可观测体系,为企业构筑坚实、高效、安全的 Agent 时代基石。
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
AI大模型分词器详解
分词器是将文本转为模型可处理数字序列的关键组件。本文详解BPE、WordPiece、SentencePiece三大主流算法原理与优劣,对比其在多语言支持、分词粒度等方面的差异,并提供中英文实战代码示例,助你掌握词汇表构建流程、特殊标记处理及常见面试问题应对策略。
153 1
|
1月前
|
存储 弹性计算 人工智能
大模型应用开发
大模型应用开发指通过API与大模型交互,构建智能化应用。不同于传统Java开发,其核心在于调用部署在云端或本地的大模型服务。企业可选择开放API、云平台或本地服务器部署,各具成本、安全与性能权衡。本章将详解部署方式与开发实践,助你快速入门。
|
6月前
|
人工智能 安全 Serverless
五年磨一剑:Agent 时代追风不如造风
Serverless 是当前技术领域最有可能演进为 AI Native Infra 的技术架构,函数计算正着力于打造模块化的 Agent Infra 之剑,助力开发者从“生态应用者”进阶为“能力定义者”,最终推动 AI 技术走向开放共享的创新之路。
|
28天前
|
机器学习/深度学习 算法 关系型数据库
🎮 强化学习
强化学习(RL)是一种通过智能体与环境交互,以最大化累积奖励为目标的学习方法。核心要素包括状态、动作、奖励和策略,强调试错与延迟奖励。常见算法如Q-learning、PPO、DPO等,广泛应用于决策优化与大模型对齐人类偏好。
|
3月前
|
监控 算法 测试技术
大模型推理服务优化:动态批处理与连续批处理技术
本文系统阐述大语言模型推理服务中的关键技术——动态批处理与连续批处理。通过分析传统静态批处理的局限性,深入解析动态批处理的请求调度算法、内存管理策略,以及连续批处理的中断恢复机制。文章包含完整的服务架构设计、核心算法实现和性能基准测试,为构建高性能大模型推理服务提供全面解决方案。
503 3
|
人工智能 算法 异构计算
用“吃火锅”来讲清楚大模型是什么
大语言模型就像一个超级聪明的“火锅AI服务员”,它通过海量数据训练,能根据你的需求推荐菜品、回答问题、甚至陪你聊人生哲学。它有超强的记忆力和灵活的应变能力,能接住各种奇葩问题,还会跟你玩梗互动。虽然偶尔会瞎编答案,但它绝对是个知识型选手。本文用轻松的“火锅局”方式,带你深入了解大语言模型的工作原理和特点。
224 1
|
8月前
|
人工智能 IDE 开发工具
寻找Cursor的替代品:10款AI编程工具深度评测与推荐·优雅草卓伊凡
寻找Cursor的替代品:10款AI编程工具深度评测与推荐·优雅草卓伊凡
6480 18
寻找Cursor的替代品:10款AI编程工具深度评测与推荐·优雅草卓伊凡
|
存储 API 数据安全/隐私保护
推荐一款轻量级且强大的 Elasticsearch GUI : elasticvue
很多同学都是用过 Elasticsearch 的 GUI 工具 Kibana ,但 Kibana 相对比较重,这篇文章,笔者推荐推荐一款**轻量级**且**强大**的 Elasticsearch GUI : **elasticvue** 。
 推荐一款轻量级且强大的 Elasticsearch GUI : elasticvue