缓存系列文章–无底洞问题

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介:

作者:

一、背景 

 1. 什么是缓存无底洞问题:

Facebook的工作人员反应2010年已达到3000个memcached节点,储存数千G的缓存。他们发现一个问题–memcached的连接效率下降了,于是添加memcached节点,添加完之后,并没有好转。称为“无底洞”现象

2. 缓存无底洞产生的原因:

键值数据库或者缓存系统,由于通常采用hash函数将key映射到对应的实例,造成key的分布与业务无关,但是由于数据量、访问量的需求,需要使用分布式后(无论是客户端一致性哈性、redis-cluster、codis),批量操作比如批量获取多个key(例如redis的mget操作),通常需要从不同实例获取key值,相比于单机批量操作只涉及到一次网络操作,分布式批量操作会涉及到多次网络io。

 

 

3. 无底洞问题带来的危害:

(1) 客户端一次批量操作会涉及多次网络操作,也就意味着批量操作会随着实例的增多,耗时会不断增大。

(2) 服务端网络连接次数变多,对实例的性能也有一定影响。
4. 结论:

用一句通俗的话总结:更多的机器不代表更多的性能,所谓“无底洞”就是说投入越多不一定产出越多。

分布式又是不可以避免的,因为我们的网站访问量和数据量越来越大,一个实例根本坑不住,所以如何高效的在分布式缓存和存储批量获取数据是一个难点。

 

二、哈希存储与顺序存储

在分布式存储产品中,哈希存储与顺序存储是两种重要的数据存储和分布方式,这两种方式不同也直接决定了批量获取数据的不同,所以这里需要对这两种数据的分布式方式进行简要说明:

1. hash分布:

hash分布应用于大部分key-value系统中,例如memcache, redis-cluster, twemproxy,即使像mysql在分库分表时候,也经常会用user%100这样的方式。

hash分布的主要作用是将key均匀的分布到各个机器,所以它的一个特点就是数据分散度较高,实现方式通常是hash(key)得到的整数再和分布式节点的某台机器做映射,以redis-cluster为例子:

问题:和业务没什么关系,不支持范围查询。

2. 顺序分布

 

 3. 两种分布方式的比较:

分布方式 特点 典型产品
哈希分布 1. 数据分散度高2.键值分布与业务无关3.无法顺序访问

4.支持批量操作

一致性哈希memcacheredisCluster其他缓存产品
顺序分布 1.数据分散度易倾斜2.键值分布与业务相关3.可以顺序访问

4.支持批量操作

BigTableHbase

 

 

 

三、分布式缓存/存储四种Mget解决方案

 

1. IO的优化思路:

(1) 命令本身的效率:例如sql优化,命令优化

(2) 网络次数:减少通信次数

(3) 降低接入成本:长连/连接池,NIO等。

(4) IO访问合并:O(n)到O(1)过程:批量接口(mget),

 

2.  如果只考虑减少网络次数的话,mget会有如下模型

 

 

3. 四种解决方案:

(1).串行mget

将Mget操作(n个key)拆分为逐次执行N次get操作, 很明显这种操作时间复杂度较高,它的操作时间=n次网络时间+n次命令时间,网络次数是n,很显然这种方案不是最优的,但是足够简单。

 

(2). 串行IO

将Mget操作(n个key),利用已知的hash函数算出key对应的节点,这样就可以得到一个这样的关系:Map<node, somekeys>,也就是每个节点对应的一些keys

它的操作时间=node次网络时间+n次命令时间,网络次数是node的个数,很明显这种方案比第一种要好很多,但是如果节点数足够多,还是有一定的性能问题。

 

 

(3). 并行IO

此方案是将方案(2)中的最后一步,改为多线程执行,网络次数虽然还是nodes.size(),但网络时间变为o(1),但是这种方案会增加编程的复杂度。

它的操作时间=1次网络时间+n次命令时间

 

(4). hash-tag实现。

第二节提到过,由于hash函数会造成key随机分配到各个节点,那么有没有一种方法能够强制一些key到指定节点到指定的节点呢?

redis提供了这样的功能,叫做hash-tag。什么意思呢?假如我们现在使用的是redis-cluster(10个redis节点组成),我们现在有1000个k-v,那么按照hash函数(crc16)规则,这1000个key会被打散到10个节点上,那么时间复杂度还是上述(1)~(3)

那么我们能不能像使用单机redis一样,一次IO将所有的key取出来呢?hash-tag提供了这样的功能,如果将上述的key改为如下,也就是用大括号括起来相同的内容,那么这些key就会到指定的一个节点上。

例如:

 


user1,user2,user3......user1000
{user}1,{user}2,{user}3.......{user}1000


例如下图:它的操作时间=1次网络时间+n次命令时间

 

 

3. 四种批量操作解决方案对比:

方案 优点 缺点 网络IO
串行mget 1.编程简单2.少量keys,性能满足要求 大量keys请求延迟严重 o(keys)
串行IO 1.编程简单2.少量节点,性能满足要求 大量node延迟严重 o(nodes)
并行IO 1.利用并行特性2.延迟取决于最慢的节点 1.编程复杂2.超时定位较难 o(max_slow(node))
hash tags 性能最高 1.tag-key业务维护成本较高2.tag分布容易出现数据倾斜 o(1)

 

 

 

 

四、总结和建议

 

无底洞问题对资源和性能有一定影响,但是其实大部分系统不需要考虑这个问题,因为

1. 99%公司的数据和流量无法和facebook相比。

2. redis/memcache的分布式集群通常来讲是按照项目组做隔离的,以我们经验来看一般不会超过50对主从。

所以这里只是提供了一种优化的思路,开阔一下视野。

 

 

五、参考文献

  1. Facebook’s Memcached Multiget Hole: More machines != More Capacity  
  2. Multiget的无底洞问题
  3. 再说memcache的multiget hole(无底洞)
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
6月前
|
缓存
你了解缓存吗?
你了解缓存吗?
你了解缓存吗?
|
2月前
|
存储 缓存 NoSQL
|
5月前
|
存储 缓存 NoSQL
在应用中使用缓存服务
【6月更文挑战第24天】本文介绍redis缓存的基本知识和使用。Redis超越简单的键值存储,Redis查询直接针对键,不支持复杂查询,适合特定场景的高性能缓存。用于减少数据库交互,优化性能。并提供练习源码查阅。
89 1
|
存储 缓存 API
缓存 #23
缓存 #23
48 0
|
存储 缓存 NoSQL
聊聊缓存
拿破仑说:胜利属于坚持到最后的人。 而正巧,咱们今天就是要聊一个,关于怎么让系统在狂轰乱炸甚至泰山压顶的情况下,都屹立不倒并坚持到最后的话题:缓存。
179 0
|
存储 缓存 前端开发
缓存的认识
缓存是架构设计中一个重要的手段。缓存的主要特点是技术比较简单,同时对性能提升的效果又很显著,所以缓存在很多业务场景中被使用到。
130 0
|
缓存 开发框架 NoSQL
7.4缓存
缓存是一个用来保存数据的区域,从缓存中读取数据要比从数据源读取数据的速度快很多。如果可以从缓存中获取要获取的数据则称之为“缓存命中”,多次请求命中的请求占全部请求的百分比叫做“命中率”,如果数据源中的数据保存到了缓存后,发生了变化则称之为“缓存数据不一致”
|
存储 缓存 算法
聊聊缓存那些事
说到缓存,作为技术同学想必大家都不会陌生,平常工作中或多或少也用到过。但是要结构化的说清楚缓存到底是什么,怎么用,用了有问题怎么解,也不是一件简单的事。所以这篇文章也是站在服务端研发的视角,对自己过去经验的一些总结,希望对大家有哪怕一丁点的帮助,也就值得了。 本篇文章计划分为两个章节来写: ● 缓存基础篇:讲一下缓存的基本原理、特性等。 ● 缓存进阶篇:讲一下缓存的实战场景,疑难问题的解决方案等。
164 0
|
存储 缓存 运维
常用缓存技巧
在项目中,大家经常会遇到处理高并发的情况,缓存是应对高并发的有效手段之一。这篇文章简单介绍一下常用的缓存手段。
|
存储 缓存 JSON
缓存的注意点
设计缓存的考虑