如何克服大数据面临的最大障碍?

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

虽然大数据在很长一段时间备受企业青睐,但事实上,根据Square Root的数据显示,只有40%的公司在真正意义上使用它。

大数据

  多年来,企业在大数据领域都面临一些障碍,以下是四个主要障碍:

改变微弱且滞后

企业利用大数据来提高生产力并不是一蹴而就的,相反,我们可以把它视为企业基础设施的根本架构,这就意味着在很短的时间内,大数据是不容易被替代的。尽管新兴企业能够很好地接受这一事实,但很多业界耕耘数年的传统企业却不得不开始重塑自己的大数据兼容性。

这是一个相对艰难的过程,一些成熟的企业正在试图采取一些措施来适应不断发展变化的外部环境。在实践中,评估哪些业务可以从大数据中受益,哪些可以让受众和生产力互动发生变化等。

专家供不应求

大数据的新实践在不断证实,工具已经与技能的发展没有太大的关系,并呼吁新一批数据专家来部署一些新的策略。然而,刚毕业的大学生由于大学基础知识无法与实践相融合,致使想要充分利用大数据的企业不得不接受行业内专家较高的成本需求,同时,竞争也是相对激烈的,但是很有必要。

企业不确定是否需要大数据的支持

不幸的是,很多企业正在以一种渴求的心态来利用大数据,但是如果你在不知道想要解决什么问题的情况下获取大数据,这将会是无用的。

然而,企业想要尽快获取最有价值的大数据,必须要合理分配时间,仔细研究实际需要完成的任务,一般涉及从开发融合系统到数据实践操作等。如果信息存在差距,大数据就会起到很重要的引导作用,你能在这个时候抓住关键,就能让大数据为自己服务。

追求速率,造成数据冗余

如果把大数据想象成一堆干草,那么,企业获益的数据就是其中一种特定的干草,正确使用大数据就是从一堆干草中寻求正确的干草类型,并进行提取。但是,很多企业没有意识到这一点,总是认为所有的干草都是有价值的、正确的,因此,企业常常使用太多的数据源、数据收集方法,并且投入太多的数据请求,这样就会造成数据冗余,没有一个是精确的或是可操作的,混乱和错误也会进一步阻碍有益数据的发展。

为此,企业需要改进其使用大数据的方式,不宜太过追求数量,而忽视正确数据的价值。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
分布式计算 大数据 关系型数据库
下一篇
无影云桌面