14 | 空间检索(下):「查找最近的加油站」和「查找附近的人」有何不同?

简介: 本文探讨了在动态查询范围内高效检索“最近的k个目标”的方案。针对GeoHash编码的局限性,提出利用四叉树和前缀树等树形结构,实现空间的层次化划分与快速范围扩展。通过非满四叉树优化存储,避免稀疏数据下的空间浪费,并以前缀树支持GeoHash字符串的高效索引。最终实现了查询范围动态调整时的高性能检索,适用于加油站、医院等“最近”需求场景。

上一讲我们讲了,对于查询范围固定的应用需求,比如「查找附近的人」,我们可以根据规划好的查询区域大小,均匀划分所有的空间,然后用 GeoHash 将坐标转换为区域编码,以该区域编码作为 Key 开始检索。这样,我们就可以查到并取出该区域中的目标数据,对这些数据进行精准计算然后排序输出了。

但是,并不是所有应用的查询范围都是不变的。在一些基于地理位置的服务中,我们并不关心检索结果是否就在我们「附近」,而是必须要找到「最近」的一批满足我们要求的结果。这怎么理解呢?

我来举个例子,我们在长途自驾游的时候,突然发现车快没油了。这个时候,我们要在一个导航地图中查找最近的 k 个加油站给车加油,这些加油站可能并不在我们附近,但地图又必须要返回最近的 k 个结果。类似的情况还有很多,比如说,我们要查询最近的医院有哪些,查询最近的超市有哪些。那对于这一类的查询,如果当前范围内查不到,系统就需要自动调整查询范围,直到能返回 k 个结果为止。

对于这种需要动态调整范围的查询场景,我们有什么高效的检索方案呢?今天,我们就来探讨一下这个问题。

直接进行多次查询会有什么问题?

我们就以查找最近的加油站为例,一个直观的想法是,我们可以先获得当前位置的 GeoHash 编码,然后根据需求不停扩大查询范围进行多次查询,最后合并查询结果。这么说比较抽象,我们来分析一个具体的位置编码。

假设我们当前地址的 GeoHash 编码为 wx4g6yc8,那我们可以先用 wx4g6yc8 去查找当前区域的加油站。如果查询的结果为空,我们就扩大范围。扩大查询范围的思路有两种。

第一种思路是,一圈一圈扩大范围。具体来说就是,我们第一次查询周边 8 个邻接区域,如果查询结果依然为空,就再扩大一圈,查询再外圈的 16 个区域。如果还是不够,下一次我们就查询再外圈的 24 个区域,依此类推。你会发现,这种方案的查询次数会成倍地增加,它的效率并不高。

另一种思路是,我们每次都将查询单位大幅提高。比如说,直接将 GeoHash 编码去掉最后一位,用 wx4g6yc 再次去查询。如果有结果返回,但是不满足要返回 Top K 个的要求,那我们就继续扩大范围,再去掉一个编码,用 wx4g6y 去查询。就这样不停扩大单位的进行反复查询,直到结果大于 k 个为止。

和第一种查询思路相比,在第二种思路中,我们每次查询的区域单位都得到了大范围的提升,因此,查询次数不会太多。比如说,对于一个长度为 8 的 GeoHash 编码,我们最多只需要查询 8 次(如果要求精准检索,那每次查询就扩展到周围 8 个同样大小的邻接区域即可,后面我就不再解释了)。

这个检索方案虽然用很少的次数就能「查询最近的 k 个结果」,但我们还需要保证,每次的查询请求都能快速返回结果。这就要求我们采用合适的索引技术,来处理 GeoHash 的每个层级。

比如说,如果使用基于哈希表的倒排检索来实现,我们就需要在 GeoHash 每个粒度层级上都分别建立一个单独的倒排表。这就意味着,每个层级的倒排表中都会出现全部的加油站,数据会被复制多次,这会带来非常大的存储开销。那我们是否有优化存储的方案呢?

我们可以利用 GeoHash 编码一维可排序的特点,使用数组或二叉检索树来存储和检索。由于数组和二叉检索树都可以支持范围查询,因此我们只需要建立一份粒度最细的索引就可以了。这样,当我们要检索更大范围的区域时,可以直接将原来的查询改写为范围查询。具体怎么做呢?

我来举个例子。在检索完 wx4g6yc8 这个区域编码以后,如果结果数量不够,还要检索 wx4g6yc 这个更大范围的区域编码,我们只要将查询改写为「查找区域编码在 wx4g6yc0 至 wx4g6ycz 之间的元素」,就可以利用同一个索引,来完成更高一个层级的区域查询了。同理,如果结果数量依然不够,那下一步我们就查询「区域编码在 wx4g6y00 至 wx4g6yzz 之间的元素」,依此类推。

但是,这种方案有一个缺点,那就是在每次调整范围查询时,我们都要从头开始进行二分查找,不能充分利用上一次已经查询到的位置信息,这会带来无谓的重复检索的开销。那该如何优化呢?你可以先想一想,然后我们一起来看解决方案。
如何利用四叉树动态调整查询范围?

上一讲我们讲过,许多系统对于 GeoHash 的底层实现,其实都是使用二进制进行存储和计算的。而二进制区域编码的生成过程,就是一个逐渐二分空间的过程,经过二分后的区域之间是有层次关系的。如果我们把这个过程画下来,它就很像我们之前讲过的树形结构。

因此,我们可以尝试用树形结构来进行索引。这里,我们就要引入一个新的数据结构 四叉树 了。四叉树的树根节点代表了整个空间,每个节点的四个分叉分别表示四个子空间。其中,树根和中间节点不存储数据,只记录分叉指针。而数据只记录在最小的区域,也就是叶子节点上。

如果我们从根节点开始,不停地四分下去,直到每个分支的叶子节点都是最小粒度区域。那这样构建出来的四叉树,每个节点都有四个子节点,就叫作 满四叉树。

对于满四叉树的每个节点,我们都可以编号。换句话说,我们可以按 00、01、10、11 的编号,来区分满四叉树的四个子节点。这样一来,只要我们从根节点遍历到叶子节点,然后将路径上每个节点的编号连起来,那最后得到的编码就是这个叶子节点所代表的区域编码。

好了,现在我们知道了四叉树的结构和特点了,那我们怎么利用它完成自动调整范围的 Top K 检索呢?下面,我们通过一个例子来看看。

假设一个人所属的最小区域编码是 0110,那我们在检索的时候,就以 0110 为 Key,沿着四叉树的对应分支去寻找相应的区域,查询路径为 01-10。如果查找到了叶子节点,并且返回的结果大于 k 个,就可以直接结束检索。如果返回结果不足 k 个,我们就得递归返回到上一层的父节点,然后以这整个父节点的区域编码为目标进行检索。这样,我们就避免了要再次从树根检索到父节点的开销,从而提升了检索效率。
如何利用非满四叉树优化存储空间?

尽管,我们使用以最小区域单位为叶子节点的满四叉树,能够很好的提升检索效率,但是在数据稀疏的时候,许多叶子节点中的数据可能是空的,这就很有可能造成大量的空间浪费。为了避免出现空间浪费,我们有一种改进方案是,使用动态节点分裂的 非满四叉树。

首先,我们可以给每个叶子节点规定一个容纳上限。比如说,我们可以将上限设置为 n。那么,一开始的四叉树只有一个根节点,这个根节点同时也是叶子节点,它表明了当前的全部空间范围。当有数据加入的时候,我们直接记录在这个节点中,查询时也只查询这个节点即可。因此,当插入的数据个数小于 n 时,我们不需要进行任何复杂的查找操作,只需要将根节点的所有数据读出,然后进行距离计算并排序即可。

随着加入的数据越来越多,如果一个叶子节点的容量超出了容纳上限,我们就将该节点进行分裂。首先,我们将该节点转为中间节点,然后,我们会为这个节点生成 1 至 4 个叶子节点(注意:不是一定要生成 4 个叶子节点),并将原来存在这个节点上的数据都转入到对应的叶子节点中。这样,我们就完成了分裂。

不过,有一种极端的情况是,这些数据都会转入到同一个下层叶子节点上。这时,我们就需要继续分裂这个叶子节点,直到每个叶子节点的容量在阈值下为止。

通过这种动态生成叶节点的方案,我们就能得到一棵非满四叉树。和满四叉树相比,它的叶子节点会更少,而且每个叶子节点表示的区域范围也可能是不一样的。这使得非满四叉树具有更好的空间利用率。非满四叉树的查询过程和满四叉树十分相似,也是根据当前的区域编码,找到对应的叶子节点,并根据该叶子节点上存储的数据数量,判断是否要递归扩大范围。这里我就不再详细说了。

如何用前缀树优化 GeoHash 编码的索引?

上面,我们都是用二进制编码来说明的。你可能会问,如果我们使用了 GeoHash 编码方式,是否也可以用类似的检索技术来索引呢?当然是可以的。实际上,对于字符串的检索,有一种专门的数据结构,叫作前缀树(Trie 树)。

前缀树的思路和四叉树非常相似,它也是一种逐层划分检索空间的数据结构。它的根节点代表了整个检索空间,然后每个中间节点和叶子节点都只存储一个字符,代表一个分支。这样,从根节点到叶子节点的路径连起来,就是一个完整的字符串。因此,当使用 GeoHash 编码来表示区域时,我们可以建立一个前缀树来进行索引,前缀树的每个节点最多会有 32 个子节点。

那如何利用前缀树来检索呢?举个例子,当我们查询 wx4g6yc8 这个区域时,我们会沿着 w-x-4-g-6-y-c-8 的路径,检索到对应的叶子节点,然后取出这个叶子节点上存储的数据。如果这个区域的数据不足 k 个,就返回到父节点上,检索对应的区域,直到返回结果达到 k 个为止。由于整体思路和四叉树是十分相似的,这里就不展开细说了。

此外,前缀树除了用在 GeoHash 编码的检索上,也经常用于字典的检索,因此也叫字典树。字典树适用于匹配字符串的检索场合。

总结来说,利用树形结构来划分空间提高检索效率的方案,它的应用非常广泛。对于更高维度空间的最近邻检索,我们也可以使用类似的检索方案来划分空间。比如说,在三维空间中,八叉树就是常见的检索方案。那拓展到更高的维度,如 k 维,我们还可以使用 k-d 树(K-Dimensional Tree)来检索。

k-d 树一种是更通用的,对任意维度都可以使用的检索方案。k-d 树和四叉树、八叉树的检索思路并不相同,它在划分子空间的时候,并不是直接将整个空间划分为 2^k 个子空间,而是会选出最有区分度的一个维度,将该维度的空间进行二分,然后对划分出的子空间再进行同样的二分处理,所以,它实际上是一个二叉树。而且,由于它的分支数和维度 k 的具体值无关,因此具有更好的通用性。

事实上,k-d 树在维度规模不大的场景下,确实具有不错的检索效率。但是,在成百上千的超高维度的场景中,k-d 树的性能会急剧下降。那在高维空间中,我们又该如何快速地查找到最近的 k 个对象呢?这个问题,也是搜索引擎和推荐引擎在很多应用场景中都要解决问题。在后面两讲中,我们会对它作详细讲解。

重点回顾

今天,我们重点学习了,在二维空间中利用四叉树,来快速寻找最近的 k 个元素的方法。

在需要动态调整查询范围的场景下,对于二进制编码的二维空间的最近邻检索问题,我们可以通过四叉树来完成。四叉树可以很好地快速划分查询空间,并通过递归的方式高效地扩大查询范围。但是满四叉树经常会造成无谓的空间浪费,为了避免这个问题,在实际应用的时候,我们会选择使用非满四叉树来存储和索引编码。对于 GeoHash 编码的二维空间最近邻检索问题,我们也能通过类似的前缀树来提高检索效率。

课堂讨论

在非满四叉树的分裂过程中,为什么一个节点不一定会生成 4 个叶子节点?你能举一个例子吗?

目录
相关文章
|
29天前
|
存储 人工智能 关系型数据库
4.3 服务端(Cursor)-接口开发(员工管理)
基于SpringBoot+Mybatis+PageHelper,使用JDK1.8+新语法,开发员工管理功能,涵盖分页查询、新增、修改、删除、详情查看及全量查询6大接口,关联员工表与工作经历表,实现高效RESTful API交互,支持多条件筛选与批量操作。
79 0
|
29天前
|
存储 自然语言处理 分布式计算
08 | 索引构建:搜索引擎如何为万亿级别网站生成索引?
针对超大规模数据场景,如搜索引擎需处理万亿级网页,倒排索引远超内存容量。本文介绍通过分治思想将文档集拆分为小块,在内存中构建局部倒排索引,再写入磁盘生成有序临时文件,最后利用多路归并技术合并为全局倒排索引。该过程可迁移至MapReduce框架实现分布式加速。检索时,优先将词典加载至内存(如哈希表或FST),结合B+树或跳表等结构高效访问磁盘中的posting list,辅以缓存优化IO。核心理念是“数据尽量入内存”与“分而治之”,兼顾效率与扩展性。
42 1
|
1月前
|
Kubernetes Cloud Native Nacos
MCP 网关实战:基于 Higress + Nacos 的零代码工具扩展方案
本文介绍一种基于开源 Higress 与 Nacos 的私有化 MCP 智能体网关架构,实现工具动态注册、Prompt 实时更新、多租户安全隔离,并支持在无外网、无 Helm 的生产环境中一键部署。
315 25
MCP 网关实战:基于 Higress + Nacos 的零代码工具扩展方案
|
NoSQL 安全 Java
SpringBoot系列(2)整合MongoDB实现增删改查(完整案例)
自己本科时候一直使用的是Mysql,目前的课题组使用的是MongoDB,因此就花了一部分时间整理了一下,实现springboot与MongoDB的整合,并且实现基本的增删改查操作,从头到尾给出一个完整的案例。
1421 0
SpringBoot系列(2)整合MongoDB实现增删改查(完整案例)
|
1月前
|
智能硬件
XP-CLR分析笔记丨检测不同种群之间由于选择引起的差异信息,群体遗传学经典方法
XP-CLR分析笔记丨检测不同种群之间由于选择引起的差异信息,群体遗传学经典方法
|
22天前
|
弹性计算 Kubernetes 安全
已上线!云监控 2.0 面向实体的全链路日志审计与风险溯源
在云端,一次 API 调用背后可能隐藏着一场数据泄露;一个异常进程背后,或许是 AK 泄露引发的链式攻击。传统日志“看得见却看不懂”,而云监控 2.0 日志审计通过 UModel 实体建模,将分散在 ACS、K8s、主机各层的日志自动串联。
187 37
|
28天前
|
人工智能 网络协议 Java
一文带你玩转 WebSocket 全链路可观测
在 AI 实时交互爆发的时代,WebSocket 成为核心协议。但其双向、长连接、流式传输特性,让传统链路追踪频频失效。阿里云 LoongSuite 基于 OpenTelemetry 标准,结合探针增强与自定义扩展,首次实现 WebSocket 全链路可观测,支持 Span 粒度控制、上下文透传、异步衔接与关键性能指标采集。
339 40
|
24天前
|
监控 Java 开发工具
Android 崩溃监控实战:一次完整的生产环境崩溃排查全流程
某 App 新版上线后收到大量用户投诉 App 闪退和崩溃。仅凭一条崩溃日志和会话追踪,团队如何在2小时内锁定「快速刷新导致数据竞态」这一根因?本文带你复现真实生产环境下的完整排查路径:从告警触发、堆栈分析、符号化解析,到用户行为还原——见证 RUM 如何让“无法复现的线上崩溃”无所遁形。
248 33
|
1月前
|
存储 自然语言处理 Kubernetes
基于 UModel 高效构建可观测场景统一实体搜索引擎
在复杂的云原生环境中,服务、Pod、主机等可观测实体动辄成千上万,散落在 APM、K8s、云资源等多个系统中。当故障发生时,如何快速从海量数据中“找到那个出问题的服务”,成为 SRE 和运维工程师的核心挑战。
174 36

热门文章

最新文章