AAAI2025!北理工团队提出FBRT-YOLO:面向实时航拍图像更快更好的目标检测 |计算机视觉|目标检测

简介: FBRT-YOLO提出专用于航拍图像的实时目标检测模型,通过轻量化设计、增强多尺度融合与小目标优化,在保证高精度的同时显著提升速度,实现复杂场景下更优的性能平衡。

01 论文概述

论文名称:FBRT-YOLO: Faster and Better for Real-Time Aerial Image Detection

—— 更快更好:面向实时航拍图像的目标检测

👉一键直达论文

👉Lab4AI大模型实验室论文

🌟 简介

航拍图像目标检测在城市监控、灾害响应和农业管理等领域至关重要。然而,这一任务面临着独特的挑战:物体尺寸变化剧烈、小目标密集、背景复杂且视角多变。通用的目标检测模型(如标准YOLO)在这些场景下往往难以同时兼顾速度与精度。

为了解决这一核心问题,FBRT-YOLO论文提出了一种专为实时航拍图像检测而深度优化的新架构。该模型以“更快、更好”(Faster and Better)为设计准则,通过对YOLO架构进行一系列针对性的改进,包括轻量化的网络设计、高效的多尺度特征融合以及对小目标的特别关注,最终实现了一个在速度和精度上都超越现有方法的、专用于航拍领域的实时检测解决方案。

🔍 优势

  • 极致的实时性能

    模型经过精心优化,推理速度极快,能够满足无人机(UAV)等边缘设备上实时处理视频流的严苛要求。

  • 卓越的小目标检测精度

    针对航拍图像中常见的小而密集的物体,FBRT-YOLO 显著提升了检测的召回率和精度,有效减少了漏检。

  • 强大的尺度适应性

    通过改进的特征融合网络,模型能够更好地处理从大型建筑到微小车辆的巨大尺度差异,在复杂场景中保持鲁棒性。

  • 优异的精度-速度平衡

    FBRT-YOLO 在保持高精度的同时,实现了更低的计算复杂度和更快的速度,达到了业界领先的性能功耗比。

🛠️ 核心技术

  • 轻量化骨干与颈部网络 (Lightweight Backbone and Neck)

    采用高效的模块(如深度可分离卷积、Ghost模块)重新设计了YOLO的骨干网络和颈部网络(Neck),在大幅减少参数量和计算量的同时,最大限度地保留了关键特征提取能力。

  • 增强的多尺度特征融合 (Enhanced Multi-scale Feature Fusion)

    设计了一种更高效的路径聚合网络(PANet)或双向特征金字塔(BiFPN)变体,加强了来自不同层级特征图之间的信息流动,这对识别航拍图像中的多尺度目标至关重要。

  • 小目标检测层 (Small Object Detection Layer)

    在特征金字塔中增加了一个分辨率更高、专门用于检测微小目标的预测头。这使得模型能够捕捉到标准YOLO容易忽略的细微特征。

  • 上下文增强与注意力机制 (Context Enhancement and Attention Mechanism)

    在网络的关键位置引入轻量级的注意力模块(如 CBAM 或 SE),让模型能够自适应地聚焦于包含目标的“感兴趣区域”,并利用更丰富的上下文信息来抑制复杂背景的干扰。

02 论文原文阅读

您可以跳转到Lab4AI.cn上进行查看。

  • Lab4AI.cn提供免费的AI翻译和AI导读工具辅助论文阅读;
  • 支持投稿复现,动手复现感兴趣的论文;
  • 论文复现完成后,您可基于您的思路和想法,开启论文创新。

03 一键式论文复现

Lab4AI平台上已上架了此篇复现案例,登录平台即可体验论文复现。

👉Lab4AI项目复现

🛠️ 实验部署

本实验环境已为您精心配置,开箱即用。

  • 💻 代码获取:项目复现代码已存放于 /codelab/FCM/code 文件夹中。
  • 🧠 模型说明:/codelab/FCM/model 文件夹中存放了 FBRT-YOLO 的预训练模型权重。
  • 📊 数据说明:/codelab/FCM/dataset 文件夹中包含了用于实验的航拍图像示例数据集(如 DOTA, VisDrone)。
  • 🌐 环境说明:运行所需的所有依赖已预安装在 /envs/FCM/ 环境中,您无需进行任何额外的环境配置。

🚀 环境与内核配置

请在终端中执行以下步骤,以确保您的开发环境(如 Jupyter 或 VS Code)能够正确使用预设的 Conda 环境。

1. 在 Jupyter Notebook/Lab 中使用您的环境

  • 为了让Jupyter能够识别并使用您刚刚创建的Conda环境,您需要为其注册一个“内核”。
  • 首先,在您已激活的Conda环境中,安装 ipykernel 包:

      conda activate FCM
      pip install ipykernel
    
  • 然后,执行内核注册命令。

      #为名为 FCM 的环境注册一个名为 "Python(FCM)" 的内核
      kernel_install --name FCM --display-name "Python(FCM)"
    
  • 完成以上操作后,刷新您项目中的Jupyter Notebook页面。在右上角的内核选择区域,您现在应该就能看到并选择您刚刚创建的 "Python(FCM)" 内核了。

2. 在 VS Code 中使用您的环境

  • VS Code 可以自动检测到您新创建的Conda环境,切换过程非常快捷。
  • 第一步: 选择 Python 解释器
    • 确保VS Code中已经安装了官方的 Python 扩展。
    • 使用快捷键 Ctrl+Shift+P (Windows/Linux) 或 Cmd+Shift+P (macOS) 打开命令面板。
    • 输入并选择 Python: Select Interpreter。
  • 第二步: 选择您的 Conda 环境
    • 在弹出的列表中,找到并点击您刚刚创建的环境(名为 FCM 的 Conda 环境)。
    • 选择后,VS Code 窗口右下角的状态栏会显示 FCM,表示切换成功。此后,当您在 VS Code 中打开 Jupyter Notebook (.ipynb) 文件时,它会自动或推荐您使用此环境的内核。
相关文章
|
11月前
|
机器学习/深度学习 编解码 知识图谱
YOLOv11改进策略【卷积层】| HWD,引入`Haar小波变换`到下采样模块中,减少信息丢失
YOLOv11改进策略【卷积层】| HWD,引入`Haar小波变换`到下采样模块中,减少信息丢失
680 0
YOLOv11改进策略【卷积层】| HWD,引入`Haar小波变换`到下采样模块中,减少信息丢失
|
10月前
|
人工智能 编解码 自动驾驶
RF-DETR:YOLO霸主地位不保?开源 SOTA 实时目标检测模型,比眨眼还快3倍!
RF-DETR是首个在COCO数据集上突破60 mAP的实时检测模型,结合Transformer架构与DINOv2主干网络,支持多分辨率灵活切换,为安防、自动驾驶等场景提供高精度实时检测方案。
2284 6
RF-DETR:YOLO霸主地位不保?开源 SOTA 实时目标检测模型,比眨眼还快3倍!
|
11月前
|
机器学习/深度学习 编解码 计算机视觉
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
1820 13
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
|
机器学习/深度学习 大数据 计算机视觉
【YOLOv8改进 - 特征融合】 GELAN:YOLOV9 通用高效层聚合网络,高效且涨点
YOLOv8专栏探讨了深度学习中信息瓶颈问题,提出可编程梯度信息(PGI)和广义高效层聚合网络(GELAN),改善轻量级模型的信息利用率。GELAN在MS COCO数据集上表现优越,且PGI适用于不同规模的模型,甚至能超越预训练SOTA。[论文](https://arxiv.org/pdf/2402.13616)和[代码](https://github.com/WongKinYiu/yolov9)已开源。核心组件RepNCSPELAN4整合了RepNCSP块和卷积。更多详情及配置参见相关链接。
|
11月前
|
计算机视觉
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
2402 10
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
|
11月前
|
机器学习/深度学习 存储 TensorFlow
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
2675 11
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
|
11月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【损失函数篇】| WIoU v3:针对低质量样本的边界框回归损失函数
YOLOv11改进策略【损失函数篇】| WIoU v3:针对低质量样本的边界框回归损失函数
1885 6
|
机器学习/深度学习
损失函数大全Cross Entropy Loss/Weighted Loss/Focal Loss/Dice Soft Loss/Soft IoU Loss
损失函数大全Cross Entropy Loss/Weighted Loss/Focal Loss/Dice Soft Loss/Soft IoU Loss
892 2
|
机器学习/深度学习
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
本文探讨了深度可分离卷积和空间可分离卷积,通过代码示例展示了它们在降低计算复杂性和提高效率方面的优势。
3258 2
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
3584 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现