使用大数据闪存打造融合数据平台

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

随着企业、服务提供商和超大型数据中心从描述性分析向预测性和规范性分析演进,结合了融合运营和分析数据管道的融合数据平台变得日益重要。大数据闪存可让数据处理平台快速访问历史数据和实时数据流,从而以较低成本创建有效的预测模型。

随着大数据从描述性分析(批量)向预测性(交互)和规范性(实时)分析演进,企业正在越来越多地使用串流数据源和历史批量数据,以提高机器的学习能力并建立预测模型。简而言之,描述性分析是为了了解事态,预测性分析是为了建立一个假设场景模型,而规范性分析是为了通过采取数据驱动型行动来影响结果。新型分析应用能够在交易发生时实时捕获它,并能影响其结果,从而带来直接的商业效益。这方面的用例包括:
反洗钱欺诈分析定向营销工业互联网(IoT/IoE)实时生产制造医疗领域的患者数据情报SanDisk闪迪利用新型分析应用对半导体制造数据进行实时分析。从Lambda架构到SMACK

Lambda架构因其融合实时分析和批量分析的能力而深受喜爱。Lambda架构使用HDFS、Scalding和HBASE作为融合实时分析和批量数据管道的构建模块。但是,该架构带来的多管道复制代码和数据的开销,使得其难以大规模部署。

为了克服Lambda架构的局限性,必需配备一个能够有效处理批量和实时串流的大数据管道。全新的SMACK堆栈——Scala及其Spark、Mesos、Akka、Cassandra和Kafka生态系统便旨在实现这一点。SMACK串流已成为一个用于处理批量和串流数据的有效大型平台。

Meosphere的Infinity堆栈或MapR新近发布的Converged Data Platform等解决方案都是Lambda架构的实例。

配备SMACK(Spark、Mesos、Akka、Cassandra和Kafka)堆栈的串流架构

以下是SMARK堆栈的简要介绍:
Spark:一个快速、通用的分布式大型数据处理引擎。Mesos:一个集群资源管理系统,在各个分布式应用之间提供高效的资源隔离和共享功能。Akka:一个工具包和运行环境,用于在JVM上创建高并发、分布式、弹性消息驱动型应用。Cassandra:一个分布式、高度可用的数据库,旨在处理多个数据中心的大量数据。Kafka:一个高吞吐量、低时延的分布式消息系统,旨在处理实时数据流。面向融合数据平台的大数据闪存

为了创建有效的预测模型,融合堆栈系统需要快速访问历史数据和实时数据流。基于闪存的数据网格可为这些新的数据驱动型架构带来巨大效益。

2015年3月,SanDisk闪迪设立了 “大数据闪存”市场类别,推出了InfiniFlash系统,它拥有极高的容量以及卓越的性能和经济性(源于低成本晶圆和全新的闪存尺寸规格)。

事实上,InfiniFlash系统之所以能成为融合数据平台架构的构建模块,其架构和性能起着至关重要的作用:
数据捕获每秒可捕获数百万个事件,且无事件丢失更快的批量摄取便于扩展使用Avro或Protobuf格式存储数据,无需ETL(提取、转换、加载)过程通过支持Kafka等分布式消息系统消除负载数据处理能够有效处理实时事件和批量数据输入存储处理,以秒和亚秒级实现时延交付数据存储面向数据密集型工作负载的软件定义数据构造,提供敏捷性和可扩展性可长时间存储数个TB的数据支持高吞吐量的批量数据存储,且满足低时延实时查询可处理分离的数据源和“突发性”工作负载采用无模式方式存储数据支持HDFS和NoSQL数据库(如Cassandra、CouchDB、MemSQL、HBase等)可借助Rackscale架构扩展至PB级极低的年故障率(AFR)可使用解聚/共享存储提供企业就绪度、沿袭(审计日志)、合规(依法保留等)和版本控制(维护不同的时间点副本)专为来自HDFS/S3的故障、备份和补丁而设计最为经济高效,低于/GB[1]数据查询支持亚秒级时延的实时查询支持批量/聚集查询支持针对HDFS和NoSQL的查询

使用InfiniFlash“大数据闪存”打造数据密集型融合数据平台的三大原因

无论您是企业还是服务提供商,以下是您应该考虑使用InfiniFlash打造融合数据平台的三大原因:

  1. 满足捕获、处理、存储和查询数据管道的所有要求

传统的直接附加型存储解决方案和纯HDD解决方案无法提供融合数据平台所需的大规模性能和吞吐量。此外,它们也不具备可扩展性所带来的资本支出和运营支出效益,也不具备这些平台所要求的敏捷性和企业就绪程度。

与传统硬盘相比,InfiniFlash系统的性能是它们的50倍,密度是它们的5倍,可靠性是它们的4倍,而且便于向上和向外扩展,以满足大数据应用的苛刻要求[2]。基于闪存的软件定义数据构造可让用户根据需要灵活选用多种文件系统,其中包括HDFS、Spectrum Scale、Lustre和Ceph。

  1. 全球支持

InfiniFlash在全球各地得到了SanDisk闪迪及其合作伙伴的支持。InfiniFlash是TSA Net Support Community的一部分,可确保满足严格的SLA协议要求。与此同时,我们的FlashStart 功能可确保其安装顺利,并提供卓越的客户体验。

  1. 同类最佳的生态系统

SanDisk闪迪与众多业内领先的软件开发者和硬件合作伙伴开展合作,通过同类最佳的生态系统获得更多的选择和灵活性。我们的合作伙伴包括: RedhatCeph、Nexenta、ICloudbyte以及思科、联想、戴尔、Supermicro、Quanta等厂商。同时,我们也正与开源社区开展密切合作,并通过我们的各项事业成为贡献者和思想领袖。(欲了解SanDisk闪迪对于开源SCST企业级特性所做出的贡献,请点击此处。)

结语

搭建融合数据平台是为了满足融合运营和分析管道的要求,以及随后的捕获、处理、存储和查询阶段的存储要求,一个基于大数据闪存的数据构造是融合平台理想的存储层构建模块,可让数据管道的每个阶段都受益。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
18天前
|
机器学习/深度学习 数据采集 人工智能
深入探索人工智能与大数据的融合之路
本文旨在探讨人工智能(AI)与大数据技术如何相互促进,共同推动现代科技的进步。通过分析两者结合的必要性、挑战以及未来趋势,为读者提供一个全面的视角,理解这一领域内的最新发展动态及其对行业的影响。文章不仅回顾了历史背景,还展望了未来可能带来的变革,并提出了几点建议以促进更高效的技术整合。
|
2月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
154 1
|
1月前
|
机器学习/深度学习 存储 大数据
云计算与大数据技术的融合应用
云计算与大数据技术的融合应用
|
1月前
|
机器学习/深度学习 人工智能 算法
探索人工智能与大数据的融合之道####
— 本文旨在探讨人工智能(AI)与大数据如何协同工作,以推动技术创新和产业升级。通过分析二者的基本概念、核心技术及应用场景,揭示它们相互促进的内在机制,并展望未来发展趋势。文章指出,AI提供了智能化处理数据的能力,而大数据则为AI提供了海量的训练资源,两者结合将开启无限可能。 ####
|
1月前
|
人工智能 算法 搜索推荐
探索人工智能与大数据的融合之道####
本文深入探讨了人工智能(AI)与大数据之间的紧密联系与相互促进的关系,揭示了二者如何共同推动科技进步与产业升级。在信息爆炸的时代背景下,大数据为AI提供了丰富的学习材料,而AI则赋予了大数据分析前所未有的深度与效率。通过具体案例分析,本文阐述了这一融合技术如何在医疗健康、智慧城市、金融科技等多个领域展现出巨大潜力,并对未来发展趋势进行了展望,强调了持续创新与伦理考量的重要性。 ####
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与大数据的融合之美####
【10月更文挑战第29天】 身处信息技术飞速发展的时代,人工智能与大数据如同两颗璀璨的星辰,在科技的夜空中交相辉映,共同推动着社会进步与变革的浪潮。本文旨在揭开AI与大数据深度融合的神秘面纱,探讨这一融合如何引领技术前沿,激发创新活力,并展望其在未来世界中的无限可能。通过深入浅出的解析,展现技术背后的逻辑与魅力,邀请读者一同踏上这场科技与智慧的探索之旅。 ####
86 2
|
2月前
|
机器学习/深度学习 人工智能 运维
智能运维:大数据与AI的融合之道###
【10月更文挑战第20天】 运维领域正经历一场静悄悄的变革,大数据与人工智能的深度融合正重塑着传统的运维模式。本文探讨了智能运维如何借助大数据分析和机器学习算法,实现从被动响应到主动预防的转变,提升系统稳定性和效率的同时,降低了运维成本。通过实例解析,揭示智能运维在现代IT架构中的核心价值,为读者提供一份关于未来运维趋势的深刻洞察。 ###
116 10
|
25天前
|
数据采集 机器学习/深度学习 人工智能
探索人工智能与大数据的融合之路####
本文将深入探讨人工智能(AI)与大数据之间的共生关系,揭示二者如何相互促进,共同推动技术边界的拓展。不同于传统摘要的概述形式,本部分将以一个生动的比喻开篇:如果把大数据比作广阔无垠的数字海洋,那么人工智能就是航行其间的智能航船,两者相辅相成,缺一不可。随后,简述文章将从数据采集、处理、分析到决策应用的全流程中,详细阐述AI如何借助大数据的力量实现自我迭代与优化,以及大数据如何在AI算法的驱动下释放出前所未有的价值。最后,预告文章还将探讨当前面临的挑战与未来趋势,为读者勾勒一幅AI与大数据融合发展的宏伟蓝图。 ####
|
3月前
|
SQL 人工智能 大数据
首个大数据批流融合国家标准正式发布,阿里云为牵头起草单位!
近日,国家市场监督管理总局、国家标准化管理委员会正式发布大数据领域首个批流融合国家标准 GB/T 44216-2024《信息技术 大数据 批流融合计算技术要求》,该标准由阿里云牵头起草,并将于2025年2月1日起正式实施。
|
3月前
|
机器学习/深度学习 人工智能 分布式计算
人工智能与大数据的融合应用##
随着科技的快速发展,人工智能(AI)和大数据技术已经深刻地改变了我们的生活。本文将探讨人工智能与大数据的基本概念、发展历程及其在多个领域的融合应用。同时,还将讨论这些技术所带来的优势与挑战,并展望未来的发展趋势。希望通过这篇文章,读者能够对人工智能与大数据有更深入的理解,并思考其对未来社会的影响。 ##