构建AI智能体:二、DeepSeek的Ollama部署FastAPI封装调用

本文涉及的产品
多模态交互后付费免费试用,全链路、全Agent
简介: 本文介绍如何通过Ollama本地部署DeepSeek大模型,结合FastAPI实现API接口调用。涵盖Ollama安装、路径迁移、模型下载运行及REST API封装全过程,助力快速构建可扩展的AI应用服务。

前言:


DeepSeek的横空出世引爆了AI大模型的势如破竹之势,在深度进入AI领域之前,对DeepSeek有个初步的了解和使用体验也至关重要,本文将结合Ollama实现本地化部署并生成开放接口,经由FastAPI调用实现!


一、Ollama的安装与路径迁移


1.打开Ollama官网


2.点击Download,按需选中要下载的版本,本文以Windows版本为例;


3.下载完成后,双击OllamaSetup.exe直接运行后点击Install开始安装,注意此处无法选择安装目录,如果需要修改目录需手动迁移;


4.安装完成后,打开cmd,运行ollama -v即可查看安装的Ollama版本信息

Ollama默认安装在C盘中:C:\Users\du\AppData\Local\Ollama,如果考虑到C盘空间需迁移目录,需手动迁移到指定目录;


5.目录迁移前先查看进程中Ollama是否正正运行,如在运行中需先结束进程,避免文件拷贝失败;


6.将整个文件夹直接剪切到新的路径,如D:\AIWorld\Ollama


7.路径迁移后需修改环境变量配置,打开环境变量


8.依次打开【环境变量】中的【Path】变量,直接在旧的配置上编辑或增加新的路径;


9.安装的路径配置完毕,还需新建或者修改系统变量中的OLLAMA_MODELS变量,将变量值改为目标路径

至此,Ollama安装路径迁移完毕,重新运行ollama.exe即可启动程序;


二、Ollama的使用


访问Ollama的官方模型库,library (ollama.com),选择需要的模型



运行指定命令下载模型,如下载deepseek-r1:1.5b 模型:

ollama pull deepseek-r1:1.5b


下载完成后,运行该模型:

ollama run deepseek-r1:1.5b


查看Ollama中正正运行的模型:

ollama ps

模型已经运行成功,并可进行对话,经过思考后输出反馈,至此,模型的搭建成功并正常运行!


三、Ollama的API调用

ollama成功运行后,会提供一个REST API接口地址,默认运行在11434端口,http://localhost:11434/api/generate,调用方式参考如下:

import requests
# 调用ollama,指定模型和本地部署后api地址
def query_ollama(prompt, model="deepseek-r1:1.5b"):
    url = "http://localhost:11434/api/generate"
    data = {
        "model": model,
        "prompt": prompt,
        "stream": False  
    }
    response = requests.post(url, json=data)
    if response.status_code == 200:
        return response.json()["response"]
    else:
        raise Exception(f"API 请求失败: {response.text}")
# 使用示例
response = query_ollama("你好,你是什么大模型,请浓重介绍一下自己!")
print(response)


运行结果:

<think>
您好!我是由中国的深度求索(DeepSeek)公司开发的智能助手DeepSeek-R1。如您有任何任何问题,我会尽我所能为您提供帮助。
</think>
您好!我是由中国的深度求索(DeepSeek)公司开发的智能助手DeepSeek-R1。如您有任何任何问题,我会尽我所能为您提供帮助。


以上示例中结果为一次性输出,也可以调整为带有思考模式的逐字输出:

import requests
# 流模式输出结果内容
def query_ollama(prompt, model="deepseek-r1:1.5b", stream=False):
    url = "http://localhost:11434/api/generate"
    data = {
        "model": model,
        "prompt": prompt,
        "stream": stream  
    }
    if stream:
        # 开始处理流式响应结果
        with requests.post(url, json=data, stream=True) as response:
            if response.status_code == 200:
                # 逐行打印结果内容
                for line in response.iter_lines(decode_unicode=True):
                    if line:
                        # Ollama流式返回每行是一个json字符串
                        try:
                            import json
                            obj = json.loads(line)
                            print(obj.get("response", ""), end="", flush=True)
                        except Exception as e:
                            print(f"解析流式响应出错: {e}")
            else:
                raise Exception(f"API 请求失败: {response.text}")
    else:
        response = requests.post(url, json=data)
        if response.status_code == 200:
            return response.json()["response"]
        else:
            raise Exception(f"API 请求失败: {response.text}")
# 使用示例
print("流式响应结果输出:")
query_ollama("你好,你是什么大模型,请隆重介绍一下自己", stream=True)


当本地的模型部署完毕后,可以使用FastAPI进行封装后提供给外部调用,主要注意接口地址和端口,以下配置路径没有特别限制,可自定义调整:

http://127.0.0.1:8000/api/aichat


from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import requests
app = FastAPI()
# 定义请求模型
class ChatRequest(BaseModel):
    prompt: str
    model: str = "deepseek-r1:1.5b"
# 允许跨域请求(根据需要配置)
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)
#此处画重点,外部访问的接口地址
@app.post("/api/aichat")
async def chat(request: ChatRequest):
    ollama_url = "http://localhost:11434/api/generate"
    data = {
        "model": request.model, #接口调用要传入的模型参数
        "prompt": request.prompt, #接口调用要传入的指令
        "stream": False
    }
    response = requests.post(ollama_url, json=data)
    if response.status_code == 200:
        return {"response": response.json()["response"]}
    else:
        return {"error": "Failed to get response from Ollama"}, 500
if __name__ == "__main__":
    import uvicorn
#外部调用时访问的端口
    uvicorn.run(app, host="0.0.0.0", port=8000)


运行以上代码后,出现以下提示,表示接口成功运行:

INFO:     Started server process [10588]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)


可以使用接口测试工具Postman测试接口是否可以正常调用,输出的结果包含了思考部分和最终结果,可以实现推理到结果的过程:


如果不清楚Postman的使用,也可以通过Python测试:

import requests
response = requests.post(
    "http://localhost:8000/api/aichat",
    json={"model":"deepseek-r1:1.5b","prompt": "你好,请介绍一下你自己"}
)
print(response.json())


也会得到同样的输出结果:

{'response': '<think>\n\n</think>\n\n您好!我是由中国的深度求索(DeepSeek)公司开发的智能助手DeepSeek-R1。关于我以及我的能力,请参考官方文档或使用相关AI服务工具获取详细信息。'}


相关文章
|
3天前
|
弹性计算 人工智能 安全
云上十五年——「弹性计算十五周年」系列客户故事(第二期)
阿里云弹性计算十五年深耕,以第九代ECS g9i实例引领算力革新。携手海尔三翼鸟、小鹏汽车、微帧科技等企业,实现性能跃升与成本优化,赋能AI、物联网、智能驾驶等前沿场景,共绘云端增长新图景。
|
9天前
|
存储 弹性计算 人工智能
【2025云栖精华内容】 打造持续领先,全球覆盖的澎湃算力底座——通用计算产品发布与行业实践专场回顾
2025年9月24日,阿里云弹性计算团队多位产品、技术专家及服务器团队技术专家共同在【2025云栖大会】现场带来了《通用计算产品发布与行业实践》的专场论坛,本论坛聚焦弹性计算多款通用算力产品发布。同时,ECS云服务器安全能力、资源售卖模式、计算AI助手等用户体验关键环节也宣布升级,让用云更简单、更智能。海尔三翼鸟云服务负责人刘建锋先生作为特邀嘉宾,莅临现场分享了关于阿里云ECS g9i推动AIoT平台的场景落地实践。
【2025云栖精华内容】 打造持续领先,全球覆盖的澎湃算力底座——通用计算产品发布与行业实践专场回顾
|
8天前
|
人工智能 自然语言处理 自动驾驶
关于举办首届全国大学生“启真问智”人工智能模型&智能体大赛决赛的通知
关于举办首届全国大学生“启真问智”人工智能模型&智能体大赛决赛的通知
|
8天前
|
云安全 人工智能 自然语言处理
阿里云x硅基流动:AI安全护栏助力构建可信模型生态
阿里云AI安全护栏:大模型的“智能过滤系统”。
|
9天前
|
编解码 自然语言处理 文字识别
Qwen3-VL再添丁!4B/8B Dense模型开源,更轻量,仍强大
凌晨,Qwen3-VL系列再添新成员——Dense架构的Qwen3-VL-8B、Qwen3-VL-4B 模型,本地部署友好,并完整保留了Qwen3-VL的全部表现,评测指标表现优秀。
661 7
Qwen3-VL再添丁!4B/8B Dense模型开源,更轻量,仍强大
|
4天前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
|
11天前
|
存储 机器学习/深度学习 人工智能
大模型微调技术:LoRA原理与实践
本文深入解析大语言模型微调中的关键技术——低秩自适应(LoRA)。通过分析全参数微调的计算瓶颈,详细阐述LoRA的数学原理、实现机制和优势特点。文章包含完整的PyTorch实现代码、性能对比实验以及实际应用场景,为开发者提供高效微调大模型的实践指南。
787 2
|
2天前
|
编解码 文字识别 算法
一张图能装下“千言万语”?DeepSeek-OCR 用视觉压缩长文本,效率提升10倍!
一张图能装下“千言万语”?DeepSeek-OCR 用视觉压缩长文本,效率提升10倍!
344 10