基于YOLOv8的跨越围栏/翻墙行为识别项目|开箱即用全流程源码

简介: 本项目基于YOLOv8目标检测模型和PyQt5图形界面工具,成功实现了翻越攀爬围栏和翻墙行为的智能检测系统。通过集成YOLOv8的高效目标检测能力和PyQt5的易用界面,本系统能够准确识别不同场景中的翻越行为,并提供多种输入方式(图片、视频、文件夹、摄像头)进行实时检测,满足多种应用需求。

基于YOLOv8的跨越围栏/翻墙行为识别项目|开箱即用全流程源码

源码包含:完整YOLOv8训练代码+数据集(带标注)+权重文件+直接可允许检测的yolo检测程序+直接部署教程/训练教程。源码在文末哔哩哔哩视频简介处获取。

本项目展示了基于YOLOv8的翻越攀爬围栏翻墙检测与识别功能,通过多种输入方式(图片、文件夹、视频与摄像头)实时检测翻越行为,支持各种类型的环境条件。功能包括:

  • 翻越行为检测: 自动识别并标记翻越围栏、墙壁等场景中的行为。
  • 多输入源支持: 支持图片、视频流、文件夹批量识别,甚至实时摄像头输入。
  • 精准检测: 基于YOLOv8架构,具备高效且准确的目标检测能力,确保翻墙行为能够被高效识别。

项目摘要

本项目结合了YOLOv8目标检测模型PyQt5图形界面工具,旨在开发一款智能翻越围栏检测系统。该系统能够通过多种方式(图片、视频、摄像头)实时监测和识别翻越攀爬围栏、墙壁的行为,具有广泛的应用场景,特别是在安全监控领域。

  • YOLOv8算法: 利用YOLOv8模型对翻越行为进行高效检测,支持不同的输入模式(图片、视频流、摄像头等),并实时返回识别结果。
  • PyQt5图形界面: 提供了一个简单直观的GUI,用户可以方便地选择检测模式,快速查看识别结果。
  • 开源与完整部署: 项目包含完整的代码、标注数据集、训练权重文件,以及详细的部署教程,确保用户能够快速上手并部署到实际环境中。

前言

随着社会治安问题的不断严峻,安全监控系统已成为现代生活中的必要设施。在众多安全监控需求中,围栏翻越与墙壁攀爬的行为识别尤为重要,尤其是在一些高风险的监控区域(如监狱、边境防线等)。通过引入基于YOLOv8的目标检测模型,本项目旨在通过计算机视觉技术提供一种高效、准确、实时的翻越行为检测方案。

本项目不仅关注翻越行为的检测,还结合了PyQt5图形界面,使得用户可以在实际操作中灵活选择输入方式,并实时查看检测结果。项目配套的源码和详细的部署文档让用户可以快速完成系统部署,并根据实际需求进行扩展。

一、软件核心功能介绍及效果演示

YOLOv8是当前最先进的目标检测框架之一,其强大的特征提取能力和高效的推理速度,使得本系统能够对翻越行为进行准确、实时的检测。该检测模块通过训练数据集中的翻越行为样本,能够准确识别以下行为:

  • 翻越围栏:检测到人员尝试翻越围栏的行为。
  • 攀爬墙壁:识别墙壁被攀爬的行为,尤其适用于高墙环境。

二、软件效果演示

为了直观展示本系统基于 YOLOv8 模型的检测能力,我们设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。

(1)单图片检测演示

用户点击“选择图片”,即可加载本地图像并执行检测:

image-20250908004154950


(2)多文件夹图片检测演示

用户可选择包含多张图像的文件夹,系统会批量检测并生成结果图。

image-20250908004233556


(3)视频检测演示

支持上传视频文件,系统会逐帧处理并生成目标检测结果,可选保存输出视频

image-20250908004507317


(4)摄像头检测演示

实时检测是系统中的核心应用之一,系统可直接调用摄像头进行检测。由于原理和视频检测相同,就不重复演示了。


(5)保存图片与视频检测结果

用户可通过按钮勾选是否保存检测结果,所有检测图像自动加框标注并保存至指定文件夹,支持后续数据分析与复审。

image-20250908004305284

三、模型的训练、评估与推理

YOLOv8是Ultralytics公司发布的新一代目标检测模型,采用更轻量的架构、更先进的损失函数(如CIoU、TaskAlignedAssigner)与Anchor-Free策略,在COCO等数据集上表现优异。
其核心优势如下:

  • 高速推理,适合实时检测任务
  • 支持Anchor-Free检测
  • 支持可扩展的Backbone和Neck结构
  • 原生支持ONNX导出与部署

3.1 YOLOv8的基本原理

YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:

  • 速度快:推理速度提升明显;
  • 准确率高:支持 Anchor-Free 架构;
  • 支持分类/检测/分割/姿态多任务
  • 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。

YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。

image-20250526165954475

YOLOv8原理图如下:

image-20250526170118103

3.2 数据集准备与训练

采用 YOLO 格式的数据集结构如下:

dataset/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

每张图像有对应的 .txt 文件,内容格式为:

4 0.5096721233576642 0.352838390077821 0.3947600423357664 0.31825755058365757

分类包括(可自定义):

image-20250908004621772

3.3. 训练结果评估

训练完成后,将在 runs/detect/train 目录生成结果文件,包括:

  • results.png:损失曲线和 mAP 曲线;
  • weights/best.pt:最佳模型权重;
  • confusion_matrix.png:混淆矩阵分析图。

若 mAP@0.5 达到 90% 以上,即可用于部署。

在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:

image-20250908004547616

3.4检测结果识别

使用 PyTorch 推理接口加载模型:

import cv2
from ultralytics import YOLO
import torch
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel

# 加入可信模型结构
safe_globals().add(DetectionModel)

# 加载模型并推理
model = YOLO('runs/detect/train/weights/best.pt')
results = model('test.jpg', save=True, conf=0.25)

# 获取保存后的图像路径
# 默认保存到 runs/detect/predict/ 目录
save_path = results[0].save_dir / results[0].path.name

# 使用 OpenCV 加载并显示图像
img = cv2.imread(str(save_path))
cv2.imshow('Detection Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

预测结果包含类别、置信度、边框坐标等信息。

image-20250908004649627

四.YOLOV8+YOLOUI完整源码打包

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见【4.2 完整源码下载】:

4.1 项目开箱即用

作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。

运行项目只需输入下面命令。

python main.py

读者也可自行配置训练集,或使用打包好的数据集直接训练。

自行训练项目只需输入下面命令。

yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001

4.2 完整源码

至项目实录视频下方获取:https://www.bilibili.com/video/BV144HCzgENi/

image-20250801135823301

包含:

📦完整项目源码

📦 预训练模型权重

🗂️ 数据集地址(含标注脚本)

总结

本项目基于YOLOv8目标检测模型和PyQt5图形界面工具,成功实现了翻越攀爬围栏和翻墙行为的智能检测系统。通过集成YOLOv8的高效目标检测能力和PyQt5的易用界面,本系统能够准确识别不同场景中的翻越行为,并提供多种输入方式(图片、视频、文件夹、摄像头)进行实时检测,满足多种应用需求。

项目包含了完整的源码、数据集(带标注)、训练权重文件,并提供详细的部署教程,确保用户能够快速部署和使用该系统。无论是应用于高安全场所的监控系统,还是其他需要翻越行为识别的场景,本系统都具备了高效、准确的优势。

随着YOLOv8技术的不断发展和界面的优化,未来本项目可以进一步提升性能,拓展更多应用领域,帮助用户更好地解决实际问题。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 监控
翻墙、攀爬、跨越围栏等违规行为检测数据集(10,000 张图片已划分)—安全检测实践
本数据集包含10,000张标注图片,专注翻墙、攀爬等违规行为检测,适用于YOLOv8模型训练。涵盖工地、校园等多种场景,支持智能安防、视频分析等应用,助力构建高效安全监控系统。
翻墙、攀爬、跨越围栏等违规行为检测数据集(10,000 张图片已划分)—安全检测实践
|
4月前
|
机器学习/深度学习 监控 数据可视化
基于YOLOv8的打架斗殴暴力行为智能识别项目源码(目标检测)
本系统结合 YOLOv8检测模型 与 PyQt5界面工具,不仅提供完整训练流程,还支持自定义数据集训练,帮助用户快速搭建 开箱即用的打架斗殴行为识别系统。
577 28
基于YOLOv8的打架斗殴暴力行为智能识别项目源码(目标检测)
|
1月前
|
监控 安全 物联网
化工厂人员定位技术从系统架构到核心功能详解(一)
化工厂人员定位技术以UWB高精度定位为核心,融合物联网与大数据,构建五层系统架构,实现人员实时定位、电子围栏预警、一键SOS报警及应急联动,提升高危区域安全管控与应急响应能力。如果您想进一步了解定位的案例,欢迎关注、评论留言~也可搜索lbs智能定位。
|
3月前
|
人工智能 监控 安全
人体姿态[站着、摔倒、坐、深蹲、跑]检测数据集(6000张图片已划分、已标注)| AI训练适用于目标检测
本数据集包含6000张已标注人体姿态图片,覆盖站着、摔倒、坐、深蹲、跑五类动作,按5:1划分训练集与验证集,标注格式兼容YOLO等主流框架,适用于跌倒检测、健身分析、安防监控等AI目标检测任务,开箱即用,助力模型快速训练与部署。
|
2月前
|
机器学习/深度学习 数据可视化 算法
基于YOLOv8的可回收瓶类垃圾快速识别与自动化分拣|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于 YOLOv8 构建了一套可回收瓶类垃圾的实时识别与自动化分拣系统,从数据集构建、模型训练到 PyQt5 可视化界面部署,形成了完整的工程化闭环。系统能够对多种瓶类废弃物进行高精度识别,并支持图片、视频、摄像头流等多场景实时处理,适用于垃圾回收站、环卫中转站、产线分拣系统等实际应用场景。
基于YOLOv8的可回收瓶类垃圾快速识别与自动化分拣|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
3月前
|
人工智能 监控 算法
睡岗检测/睡觉检测数据集(2000张图片已划分、已标注)轻松上手目标检测训练
本数据集包含2000张已标注睡岗行为图片,涵盖多种真实场景,适用于YOLO等目标检测模型训练。专为安防、工业值守、交通监控等智能识别场景设计,助力快速构建睡岗检测系统,推动AI在安全领域的落地应用。
675 12
睡岗检测/睡觉检测数据集(2000张图片已划分、已标注)轻松上手目标检测训练
|
3月前
|
机器学习/深度学习 人工智能 编解码
7种常见鸟类分类图像数据集(8000张图片已划分)|AI训练适用于目标检测任务
本数据集包含8000张7类常见鸟类图像,涵盖麻雀、鸽子、乌鸦等,已划分训练与验证集,适用于AI目标检测与分类任务,支持YOLO、ResNet等模型,助力生态监测与科研教学。
7种常见鸟类分类图像数据集(8000张图片已划分)|AI训练适用于目标检测任务
|
4月前
|
机器学习/深度学习 数据采集 人工智能
猪在日常饲养环境行为数据集(3000 张图片已划分、已标注)| 适用于目标检测任务
本 猪在日常饲养环境行为数据集(3000 张图片已划分、已标注),在数据规模、类别覆盖与标注精度方面均具有较高的实用性。它不仅为智能养殖系统的研究与应用提供了坚实的数据基础,也为学术研究者探索农业人工智能提供了重要资源。
|
3月前
|
数据采集 传感器 安全
工业粉尘检测数据集:从数据采集到模型训练(4000 张图片已划分、已标注)| 适用与目标检测
本数据集包含4000张已标注、已划分的粉尘图像,训练集与验证集按3:1比例分布,支持YOLO、COCO等格式,适用于目标检测、环境监测及AIoT应用,助力工业安全与智能感知研究。
工业粉尘检测数据集:从数据采集到模型训练(4000 张图片已划分、已标注)| 适用与目标检测
|
4月前
|
机器学习/深度学习 人工智能 数据可视化
白血病细胞检测系统(YOLOv8+PyQt5)源码分享
本项目基于 YOLOv8 搭建了一个白血病细胞识别系统,并通过 PyQt5 图形界面 实现了可视化操作,涵盖了从 模型训练、推理检测到界面化应用 的完整流程。与传统的人工观察相比,该系统能够显著提升细胞识别的 效率与准确性,并为科研人员和医学教学提供了便捷工具。

热门文章

最新文章