基于mediapipe深度学习的运动人体姿态提取系统python源码

简介: 本内容介绍了基于Mediapipe的人体姿态提取算法。包含算法运行效果图、软件版本说明、核心代码及详细理论解析。Mediapipe通过预训练模型检测人体关键点,并利用部分亲和场(PAFs)构建姿态骨架,具有模块化架构,支持高效灵活的数据处理流程。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.gif
6.gif

2.算法运行软件版本
程序运行配置环境:

人工智能算法python程序运行环境安装步骤整理-CSDN博客

image.png

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```# 使用mediapipe进行姿态检测的函数

frame是输入的视频帧,pose是姿态检测对象

def mediapipe_detect(frame, pose):
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)# 将视频帧从BGR颜色空间转换为RGB颜色空间
img.flags.writeable = False
results = pose.process(img)# 使用姿态检测对象处理图像,得到检测结果
img.flags.writeable = True
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)# 将图像从RGB颜色空间转换回BGR颜色空间
return img, results# 返回处理后的图像和检测结果

```

4.算法理论概述
4.1 Mediapipe在人体姿态提取中的应用
Mediapipe使用预训练的深度学习模型来进行人体姿态提取,常见的模型结构如OpenPose模型。该模型通过对大量人体姿态图像数据的学习,构建了一个能够准确预测人体关节位置的模型。模型的目标是检测人体的多个关键点(如头部、肩部、肘部、腕部、髋部、膝部、踝部等)的位置。对于每个关键点,模型输出一个置信度图(confidence map),表示该关键点在图像中每个位置出现的概率。

   在检测到各个关键点后,需要确定哪些关键点属于同一肢体,从而构建完整的人体姿态骨架。这通常通过计算关键点之间的亲和度(affinity)来实现。例如,对于两个相邻的关键点(如肩部和肘部),模型会输出一个表示它们之间连接可能性的向量场(vector field),称为部分亲和场(Part Affinity Fields, PAFs)。

4.2 Mediapipe架构
Mediapipe 采用模块化设计,其核心架构主要由以下几个部分组成:

Calculator Graph:计算器图是Mediapipe的核心,它由多个Calculator节点和数据流组成,Calculator是Mediapipe中的基本处理单元,负责完成特定的计算任务,如数据预处理、特征提取等。数据流则用于在不同的Calculator之间传递数据。

Packet:数据包是Mediapipe中数据传递的基本单位,它可以包含各种类型的数据,如图像、音频、关键点坐标等。每个Packet都有一个时间戳,用于标识数据的产生时间。

Subgraph:子图是一种特殊的Calculator,它由多个Calculator组成,可以将复杂的计算任务封装成一个独立的模块,提高代码的复用性和可维护性。

4.3 Mediapipe的工作过程

定义Calculator Graph:根据具体的任务需求,定义一个Calculator Graph,将不同的Calculator 节点连接起来,形成一个数据处理管道。

初始化 Graph:在运行之前,需要对Calculator Graph进行初始化,包括加载模型、分配资源等操作。

输入数据:将待处理的数据(如图像、视频等)输入到Calculator Graph中,数据会按照预先定义的数据流路径依次经过各个Calculator节点进行处理。

处理数据:每个Calculator节点根据自身的功能对输入的数据进行处理,并将处理结果输出到下一个节点。

输出结果:经过一系列的处理后,最终的结果会从Calculator Graph的输出节点输出。

相关文章
|
3月前
|
机器学习/深度学习 监控 算法
基于mediapipe深度学习的手势数字识别系统python源码
本内容涵盖手势识别算法的相关资料,包括:1. 算法运行效果预览(无水印完整程序);2. 软件版本与配置环境说明,提供Python运行环境安装步骤;3. 部分核心代码,完整版含中文注释及操作视频;4. 算法理论概述,详解Mediapipe框架在手势识别中的应用。Mediapipe采用模块化设计,包含Calculator Graph、Packet和Subgraph等核心组件,支持实时处理任务,广泛应用于虚拟现实、智能监控等领域。
|
8天前
|
机器学习/深度学习 算法 vr&ar
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
|
2月前
|
机器学习/深度学习 存储 监控
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
本项目基于深度学习的YOLO框架,成功实现了城市道路损伤的自动检测与评估。通过YOLOv8模型,我们能够高效地识别和分类路面裂缝、井盖移位、坑洼路面等常见的道路损伤类型。系统的核心优势在于其高效性和实时性,能够实时监控城市道路,自动标注损伤类型,并生成损伤评估报告。
154 0
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
|
2月前
|
机器学习/深度学习 自动驾驶 算法
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
在智慧交通和智能驾驶日益普及的今天,准确识别复杂交通场景中的关键元素已成为自动驾驶系统的核心能力之一。传统的图像处理技术难以适应高动态、复杂天气、多目标密集的交通环境,而基于深度学习的目标检测算法,尤其是YOLO(You Only Look Once)系列,因其检测速度快、精度高、可部署性强等特点,在交通场景识别中占据了重要地位。
322 0
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
|
9月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
816 55
|
8月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
483 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
3月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
130 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
7月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
360 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
10月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品安全追溯系统的深度学习模型
使用Python实现智能食品安全追溯系统的深度学习模型
181 4
|
3月前
|
机器学习/深度学习 运维 监控
服务器会“生病”?聊聊深度学习咋当系统“老中医”
服务器会“生病”?聊聊深度学习咋当系统“老中医”
87 0

热门文章

最新文章