AI协作的四大支柱:协议详解与应用场景全解析​

本文涉及的产品
多模态交互后付费免费试用,全链路、全Agent
简介: 本文深入解析Agentic AI协议的四大核心协议——MCP、A2A、ACP与ANP,涵盖技术特性、应用场景及选型指南,助你掌握多代理协作系统构建要点。

本文较长,建议点赞收藏,以免遗失。文中我还会放入一些相关技术文档,帮助大家更好的学习。

随着Agentic AI协议的演进,AI系统正从单体模型向多代理协作生态转型。今天我将深度解析四大核心协议的技术特性与应用场景,希望能帮助到各位。

一、Agentic AI协议的核心价值

Agentic AI协议定义了AI代理与工具、数据及其他代理的标准化交互框架,解决三大关键问题:

  1. ​​上下文共享​​:支持历史状态与意图的连续性传递
  2. ​​工具互操作性​​:实现API/数据库的无缝调用
  3. ​​协作机制​​:提供任务分配、动态路由与信任建立基础

image.png

二、四大协议技术解析

2.1 模型上下文协议(MCP)

​​设计目标​​:增强单代理与外部资源的交互能力

​​核心技术​​:

  • JSON-RPC工具调用接口(支持API/数据库集成)
  • 长期记忆跟踪(维持多轮对话状态)
  • 目标管理及自我反思机制 ​​适用场景​​:
# MCP工具调用示例(天气数据获取)
async def get_weather():
    return await mcp_agent_app.call_tool(
        tool="get_weather", 
        arguments={"location": "New York"}
    )

2.2 代理到代理协议(A2A)

​​设计目标​​:实现企业级多代理点对点协作

​​核心技术​​:

  • Agent Card元数据定义(身份/能力/服务端点)
  • HTTPS加密通信通道
  • 跨生态系统互操作性支持 ​​适用场景​​:

image.png

2.3 代理通信协议(ACP)

​​设计目标​​:构建逻辑严密的协商机制

​​核心技术​​:

  • 基于FIPA ACL的行为动词(Request/Inform/Propose)
  • 角色分配与对话状态机
  • 低延迟边缘计算优化

​​适用场景​​:

image.png

2.4 代理网络协议(ANP)

​​设计目标​​:建立去中心化代理生态

​​核心技术​​:

  • DID分布式身份认证
  • JSON-LD语义数据描述
  • P2P动态发现与容错机制 ​​适用场景​​:

image.png

ps:由于文章篇幅有限,对MCP不是太了解的粉丝朋友,我这里整理了一份很详细的技术文档,帮助各位更好的学习,粉丝朋友自行领取《MCP技术详解》

三、协议对比与选型指南

3cbb878c2b0e558fe85e3e1c3080e90b.jpg

维度 MCP A2A ACP ANP
​​核心能力​​ 工具集成 点对点协作 逻辑协商 去中心化网络
​​发现机制​​ 工具注册表 Agent Card 会话路由 DID发现
​​适用场景​​ 智能编码助手 企业工作流 供应链管理 跨组织代理市场
​​安全方案​​ OAuth 2.0 企业级签名 角色认证 加密签名

四、总结

根据当前协议发展,未来将呈现三大方向:

  1. ​​协议融合​​:A2A与ANP正探索身份认证互操作性
  2. ​​性能优化​​:ACP针对边缘设备推出轻量级版本
  3. ​​标准化进程​​:IEEE已启动Agentic AI协议工作组

作者建议:各位粉丝朋友需根据场景需求选择协议——深度工具集成选MCP,企业协作选A2A,强逻辑场景用ACP,开放生态建ANP。

好了,今天的分享就到这里,点个小红心,我们下期见。

目录
相关文章
人工智能 关系型数据库 分布式数据库
216 19
|
20天前
|
机器学习/深度学习 人工智能 运维
运维告警别乱飞了!AI智能报警案例解析
运维告警别乱飞了!AI智能报警案例解析
111 0
|
2月前
|
存储 人工智能 算法
AI测试平台实战:深入解析自动化评分和多模型对比评测
在AI技术迅猛发展的今天,测试工程师面临着如何高效评估大模型性能的全新挑战。本文将深入探讨AI测试平台中自动化评分与多模型对比评测的关键技术与实践方法,为测试工程师提供可落地的解决方案。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI概念解析:从入门到精通的43个关键术语指南
本文系统梳理AI领域50个核心术语,涵盖基础概念、技术原理、应用场景与合规风险,帮助读者精准理解AI本质,把握技术演进脉络与产业趋势,提升智能时代认知与决策能力。
|
10天前
|
人工智能 数据可视化 数据处理
AI智能体框架怎么选?7个主流工具详细对比解析
大语言模型需借助AI智能体实现“理解”到“行动”的跨越。本文解析主流智能体框架,从RelevanceAI、smolagents到LangGraph,涵盖技术门槛、任务复杂度、社区生态等选型关键因素,助你根据项目需求选择最合适的开发工具,构建高效、可扩展的智能系统。
228 3
AI智能体框架怎么选?7个主流工具详细对比解析
|
9天前
|
传感器 人工智能 数据可视化
AI智能体框架怎么选?7个主流工具详细对比解析
大语言模型虽强,但缺乏行动力。AI智能体通过工具调用、环境感知与自主决策,实现从“理解”到“执行”的跨越。本文解析主流智能体框架,助你根据技术能力、任务复杂度与业务目标,选择最适合的开发工具,从入门到落地高效构建智能系统。(238字)
114 7
|
10天前
|
机器学习/深度学习 人工智能 数据安全/隐私保护
阿里云 Qwen3 全栈 AI 模型:技术解析、开发者实操指南与 100 万企业落地案例
阿里云发布Qwen3全栈AI体系,推出Qwen3-Max、Qwen3-Next等七大模型,性能全球领先,开源生态超6亿次下载。支持百万级上下文、多模态理解,训练成本降90%,助力企业高效落地AI。覆盖制造、金融、创作等场景,提供无代码与代码级开发工具,共建超级AI云生态。
185 6
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
212 8
|
1月前
|
人工智能 安全 数据可视化
深度解析三大AI协议:MCP、ACP与A2A,看懂智能代理的通信法则
在AI代理技术快速发展的背景下,MCP、ACP和A2A三大协议成为推动AI生态协作的关键标准。MCP(模型上下文协议)为大模型提供标准化信息接口,提升AI处理外部数据的效率;ACP(代理通信协议)专注于边缘设备间的低延迟通信,实现本地系统的高效协同;A2A(代理对代理协议)则构建跨平台通信标准,打通不同AI系统的协作壁垒。三者各司其职,共同推动AI从独立工具向智能协作团队演进,提升整体智能化水平与应用灵活性。
243 2
深度解析三大AI协议:MCP、ACP与A2A,看懂智能代理的通信法则
|
14天前
|
人工智能 自然语言处理 前端开发
深度解析Playwright MCP:功能、优势与挑战,AI如何提升测试效率与覆盖率
Playwright MCP通过AI与浏览器交互,实现自然语言驱动的自动化测试。它降低门槛、提升效率,助力测试工程师聚焦高价值工作,是探索性测试与快速验证的新利器。