面向海洋保护的YOLOv8水下垃圾分类检测系统|含训练与部署代码

简介: 本项目围绕海洋环境保护问题,构建了一个基于 YOLOv8 的水下垃圾目标检测系统,具备良好的实用性与可扩展性。系统集成了自定义数据训练、图形界面封装、实时检测展示等多个关键模块,能够有效识别和分类 12 类典型水下垃圾。

面向海洋保护的YOLOv8水下垃圾分类检测系统|含训练与部署代码

源码包含:完整YOLOv8训练代码+数据集(带标注)+权重文件+直接可允许检测的yolo检测程序+直接部署教程/训练教程

项目摘要

本项目融合了 YOLOv8 强大目标检测能力PyQt5 图形用户界面,不仅支持完整训练流程,还支持用户一键使用图形化界面部署水下垃圾识别系统,适用于科研、教育、产业等多种场景。

🎯 技术关键词:

  • YOLOv8 检测模型(Ultralytics)
  • PyQt5 图形界面封装
  • 多线程实时检测
  • 自定义水下数据集训练

前言

近年来,海洋垃圾污染问题日益严重,尤其是塑料制品、渔具等水下垃圾对海洋生态系统造成了极大威胁。为此,我们设计并实现了一个基于 YOLOv8 的水下垃圾检测与分类系统,助力海洋保护与水下智能识别技术的落地。

系统可对水下拍摄图像或视频中的目标进行实时检测、识别并分类,为水下机器人清洁与海洋环保科研提供基础数据。

一、软件核心功能介绍及效果演示

本系统以 Ultralytics 的 YOLOv8 为核心,集成图形化操作界面(PyQt5),支持用户通过可视化方式进行水下垃圾目标检测,兼顾高精度与易用性,适用于教学演示、科研实验、实地部署等多场景。

1️⃣ 多种输入方式支持

模式类型 功能描述
📷 图片检测 支持单张图片或整文件夹批量检测,检测结果自动标注并保存
📁 视频检测 支持本地视频文件分析,逐帧检测并展示各类海洋垃圾目标
🎥 摄像头检测 支持 USB 摄像头/内置摄像头实时检测,可调分辨率和帧率
🖼 结果展示 检测结果可视化显示(带标签类别和置信度),支持图像保存或结果导出

2️⃣ 支持12类海洋垃圾智能分类

通过对训练数据的优化与模型调参,系统可稳定识别以下 12 类水下垃圾:

bash复制编辑['有机物', '布料', '渔具', '金属', '纸张A', '纸张B', 
 '塑料', 'ROV设备', '橡胶', '时间信息', '未知类别', '木材']

识别示例图如下所示:

✅ 示例检测图(可插入带预测框的图像)
✅ 每类目标均有独立颜色区分,结果更直观

二、软件效果演示

为了直观展示本系统基于 YOLOv8 模型的检测能力,我们设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。

(1)单图片检测演示

用户点击“选择图片”,即可加载本地图像并执行检测:

image.png


(2)多文件夹图片检测演示

用户可选择包含多张图像的文件夹,系统会批量检测并生成结果图。

image.png


(3)视频检测演示

支持上传视频文件,系统会逐帧处理并生成目标检测结果,可选保存输出视频:

image.png


(4)摄像头检测演示

实时检测是系统中的核心应用之一,系统可直接调用摄像头进行检测。由于原理和视频检测相同,就不重复演示了。

image-20250801195159903


(5)保存图片与视频检测结果

用户可通过按钮勾选是否保存检测结果,所有检测图像自动加框标注并保存至指定文件夹,支持后续数据分析与复审。

image-20250801195105885

三、模型的训练、评估与推理

YOLOv8是Ultralytics公司发布的新一代目标检测模型,采用更轻量的架构、更先进的损失函数(如CIoU、TaskAlignedAssigner)与Anchor-Free策略,在COCO等数据集上表现优异。
其核心优势如下:

  • 高速推理,适合实时检测任务
  • 支持Anchor-Free检测
  • 支持可扩展的Backbone和Neck结构
  • 原生支持ONNX导出与部署

3.1 YOLOv8的基本原理

YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:

  • 速度快:推理速度提升明显;
  • 准确率高:支持 Anchor-Free 架构;
  • 支持分类/检测/分割/姿态多任务
  • 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。

YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。

image-20250526165954475

YOLOv8原理图如下:

image-20250526170118103

3.2 数据集准备与训练

采用 YOLO 格式的数据集结构如下:

dataset/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

每张图像有对应的 .txt 文件,内容格式为:

4 0.5096721233576642 0.352838390077821 0.3947600423357664 0.31825755058365757

分类包括(可自定义):

image-20250801194828757

3.3. 训练结果评估

训练完成后,将在 runs/detect/train 目录生成结果文件,包括:

  • results.png:损失曲线和 mAP 曲线;
  • weights/best.pt:最佳模型权重;
  • confusion_matrix.png:混淆矩阵分析图。

若 mAP@0.5 达到 90% 以上,即可用于部署。

在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:

image-20250801194856537

3.4检测结果识别

使用 PyTorch 推理接口加载模型:

import cv2
from ultralytics import YOLO
import torch
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel

# 加入可信模型结构
safe_globals().add(DetectionModel)

# 加载模型并推理
model = YOLO('runs/detect/train/weights/best.pt')
results = model('test.jpg', save=True, conf=0.25)

# 获取保存后的图像路径
# 默认保存到 runs/detect/predict/ 目录
save_path = results[0].save_dir / results[0].path.name

# 使用 OpenCV 加载并显示图像
img = cv2.imread(str(save_path))
cv2.imshow('Detection Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

预测结果包含类别、置信度、边框坐标等信息。

image-20250801194934040

四.YOLOV8+YOLOUI完整源码打包

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见【4.2 完整源码下载】:

4.1 项目开箱即用

作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。

运行项目只需输入下面命令。

python main.py

读者也可自行配置训练集,或使用打包好的数据集直接训练。

自行训练项目只需输入下面命令。

yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001

4.2 完整源码

至项目实录视频下方获取:https://www.bilibili.com/video/BV1UihnzTEya/

image-20250801135823301

包含:

📦完整项目源码

📦 预训练模型权重

🗂️ 数据集地址(含标注脚本)

总结

本项目围绕海洋环境保护问题,构建了一个基于 YOLOv8 的水下垃圾目标检测系统,具备良好的实用性与可扩展性。系统集成了自定义数据训练、图形界面封装、实时检测展示等多个关键模块,能够有效识别和分类 12 类典型水下垃圾。

✅ 项目亮点回顾:

  • 全流程支持:从数据标注、训练、测试到部署,全套流程开箱即用
  • 识别精度高:在复杂水下环境中表现稳定,支持多类目标同时检测
  • 界面友好:采用 PyQt5 封装界面,零代码基础也可操作
  • 多输入源支持:图像、视频、摄像头全覆盖
  • 适用场景广泛:可用于科研、环保监测、水下机器人辅助视觉等任务

🌊 对海洋保护的意义:

通过智能化、自动化手段监测水下垃圾,本系统可大大提升数据获取效率与准确性,为科研机构、环保组织提供高质量的技术工具,助力全球范围内的海洋环境治理工作。


🔧 如果你正在从事相关研究,或想快速搭建自己的水下识别系统,本项目将是一个极具参考价值的开源起点。

相关文章
|
1月前
|
机器学习/深度学习 存储 人工智能
深度解析大模型压缩技术:搞懂深度学习中的减枝、量化、知识蒸馏
本文系统解析深度学习模型压缩三大核心技术:剪枝、量化与知识蒸馏,详解如何实现模型缩小16倍、推理加速4倍。涵盖技术原理、工程实践与组合策略,助力AI模型高效部署至边缘设备。
403 0
|
1月前
|
机器学习/深度学习 监控 算法
摊位货摊自动识别与监控系统识别系统开箱即用教程 (YOLOv8)| 完整源码与部署教程
本项目展示了如何通过 YOLOv8 深度学习模型与 PyQt5 图形界面结合,开发一个 摊位货摊自动识别与监控系统。该系统能够高效地检测摊位上的商品,并对周围的行为进行实时监控,为摊位管理带来极大的便利。系统支持多种输入方式,如图像、视频和摄像头,并具备异常行为检测和报警功能。
摊位货摊自动识别与监控系统识别系统开箱即用教程 (YOLOv8)| 完整源码与部署教程
|
2月前
|
机器学习/深度学习 人工智能 数据可视化
基于YOLOv8的100种中药分类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8实现100种中药材分类识别,配备完整数据集、训练代码与PyQt5图形界面,支持图片、视频及摄像头检测,提供开箱即用的中药智能识别系统。
基于YOLOv8的100种中药分类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
1月前
|
人工智能 自然语言处理 前端开发
让AI学会"边做边想":ReAct的实战指南
还在为AI的「知其然不知其所以然」而烦恼?ReAct技术让AI不仅会思考,更会行动!通过模拟人类的思考-行动-观察循环,让AI从书呆子变身为真正的问题解决专家。几行代码就能构建智能Agent,告别AI幻觉,拥抱可追溯的推理过程!
|
8天前
|
机器学习/深度学习 监控 算法
基于YOLOv8的人体多姿态行为识别系统(站立、摔倒、坐姿、深蹲与跑步)|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8深度学习模型,实现了一个多姿态行为识别系统,能够精准地识别站立、摔倒、坐姿、深蹲和跑步等行为。项目的核心内容包括完整的YOLOv8训练代码、标注数据集、预训练权重文件、部署教程和PyQt5界面,提供了一套从数据收集到最终部署的完整解决方案。
基于YOLOv8的人体多姿态行为识别系统(站立、摔倒、坐姿、深蹲与跑步)|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
1月前
|
机器学习/深度学习 人工智能 监控
河道塑料瓶识别标准数据集 | 科研与项目必备(图片已划分、已标注)| 适用于YOLO系列深度学习分类检测任务【数据集分享】
随着城市化进程加快和塑料制品使用量增加,河道中的塑料垃圾问题日益严重。塑料瓶作为河道漂浮垃圾的主要类型,不仅破坏水体景观,还威胁水生生态系统的健康。传统的人工巡查方式效率低、成本高,难以满足实时监控与治理的需求。
|
1月前
|
机器学习/深度学习 人工智能 自动驾驶
7种交通场景数据集(千张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在智能交通与自动驾驶技术快速发展的今天,如何高效、准确地感知道路环境已经成为研究与应用的核心问题。车辆、行人和交通信号灯作为城市交通系统的关键元素,对道路安全与交通效率具有直接影响。然而,真实道路场景往往伴随 复杂光照、遮挡、多目标混杂以及交通信号状态多样化 等挑战,使得视觉识别与检测任务难度显著增加。
|
1月前
|
机器学习/深度学习 人工智能 监控
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
坐姿标准好坏姿态数据集的发布,填补了计算机视觉领域在“细分健康行为识别”上的空白。它不仅具有研究价值,更在实际应用层面具备广阔前景。从青少年的健康教育,到办公室的智能提醒,再到驾驶员的安全监控和康复训练,本数据集都能发挥巨大的作用。
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
1月前
|
机器学习/深度学习 自动驾驶 算法
道路表面缺陷数据集(裂缝/井盖/坑洼)(6000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
随着城市化与交通运输业的快速发展,道路基础设施的健康状况直接关系到出行安全与城市运行效率。长期高强度的使用、气候变化以及施工质量差异,都会导致道路表面出现裂缝、坑洼、井盖下沉及修补不良等缺陷。这些问题不仅影响驾驶舒适度,还可能引发交通事故,增加道路养护成本。
道路表面缺陷数据集(裂缝/井盖/坑洼)(6000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
1月前
|
机器学习/深度学习 人工智能 文字识别
基于YOLOv8的文档图像表格检测与识别系统设计与实现(源码打包)
相比传统图像处理方法,YOLOv8 在表格检测任务中展现出更强的鲁棒性与泛化能力,尤其在复杂背景、扫描文档、低分辨率场景下依然保持高精度表现。同时,项目提供完整的训练流程与标注数据集,便于用户根据具体业务场景进行迁移学习与模型微调。
基于YOLOv8的文档图像表格检测与识别系统设计与实现(源码打包)