RDS DuckDB技术解析一:当 MySQL遇见列式存储引擎

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: RDS MySQL DuckDB分析实例以​列式存储与向量化计算​为核心,实现​复杂分析查询性能百倍跃升​,为企业在海量数据规模场景下提供​实时分析能力​,加速企业数据驱动型决策效能。​​


MySQL的插件式存储引擎架构

MySQL的核心创新之一就是其插件式存储引擎架构(Pluggable Storage Engine Architecture),这种架构使得MySQL可以通过多种不同的存储引擎来扩展自己的能力,从而支持更多的业务场景。MySQL的插件式架构如下图所示:


MySQL的插件式存储引擎架构可以划分为四个主要的部分:

  • 运行层(Runtime Layer):负责MySQL运行相关的任务,比如通讯、访问控制、系统配置、监控等信息。
  • Binlog层(Binlog Layer): 负责Binlog的生成、复制和应用。
  • SQL层(SQL Layer):复制SQL的解析、优化和SQL的执行。
  • 存储引擎层(Storage Engine Layer):负责数据的存储和访问。

MySQL在SQL计算和数据存储之间设计了一套标准的数据访问控制接口(Plugable Engine Interface),SQL层通过这个标准的接口进行数据的更新、查询和管理,存储引擎得以作为独立组件实现“热插拔”式集成。


目前MySQL中常用的存储引擎包括:

  • MyISAM:MySQL最早使用的引擎,因为不支持事务已经被InnoDB取代。但是一直到MySQL-5.7还是系统表的存储引擎。
  • InnoDB:MySQL的默认引擎。因期对事务的支持以及优秀的性能表现,逐步替代MyISAM成为MySQL最广泛使用的引擎。
  • CSV: CSV文件引擎,MySQL慢日志和General Log的存储引擎。
  • Memory:内存表存储引擎,也可作为SQL执行时内部临时表的存储引擎。
  • TempTable:MySQL-8.0引入的引擎,用于存储内部临时表。


InnoDB作为引擎引入到MySQL,是MySQL插件式引擎架构的一个非常重要的里程碑。在互联网发展的初期,MyISAM因其简单高效的访问赢得了互联网业务的青睐,和Linux、Apach、PHP一起被称为LAMP架构。随着电商、社交互联网的兴起,MyIASAM的短板越来越明显。InnoDB因其对事务ACID的支持、在并发访问和性能上的优势,大大的拓展了MySQL的能力。在InnoDB的加持下,MySQL成为最流行的开源OLTP数据库。


随着MySQL的广泛使用,我们看到有越来越多基于TP数据的分析型查询。InnoDB的架构是天然为OLTP设计,虽然在TP业务场景下能够有非常优秀的性能表现。但InnoDB在分析型业务场景下的查询效率非常的低。这大大的限制了MySQL的使用场景。时至今日,MySQL一直欠缺一个分析型查询引擎。DuckDB的出现让我们看到了一种可能性。

DuckDB简介

DuckDB 是一个开源的在线分析处理(OLAP)和数据分析工作负载而设计。因其轻量、高性能、零配置和易集成的特性,正在迅速成为数据科学、BI 工具和嵌入式分析场景中的热门选择。DuckDB主要有以下几个特点:

  • 卓越的查询性能:单机DuckDB的性能不但远高于InnoDB,甚至比ClickHouse和SelectDB的性能更好。
  • 优秀的压缩比:DuckDB采用列式存储,根据类型自动选择合适的压缩算法,具有非常高的压缩率。
  • 嵌入式设计:DuckDB是一个嵌入式的数据库系统,天然的适合被集成到MySQL中。
  • 插件化设计:DuckDB采用了插件式的设计,非常方便进行第三方的开发和功能扩展。
  • 友好的License:DuckDB的License允许任何形式的使用DuckDB的源代码,包括商业行为。


基于以上的几个原因,我们认为DuckDB非常适合成为MySQL的AP存储引擎。因此我们将DuckDB集成到了AliSQL中



DuckDB引擎的定位是实现轻量级的单机分析能力,目前基于DuckDB引擎的RDS MySQL DuckDB只读实例已经上线,欢迎试用。未来我们还会上线主备高可用的RDS MySQL DuckDB主实例,用户可以通过DTS等工具将异构数据汇聚到RDS MySQL DuckDB实例,实现数据的分析查询。

RDS MySQL DuckDB只读实例的架构

DuckDB分析只读实例,采用读写分离的架构。分析型业务和主库业务分离,互不影响。和普通只读实例一样,通过Binlog复制机制从主库复制数据。DuckDB分析只读节点有以下优势:

  • 高性能分析查询:基于DuckDB的查询能力,分析型查询性能相比InnoDB提升高达200倍(详见性能部分)。
  • 存储成本低:基于DuckDB的高压缩率,DuckDB只读实例的存储空间通常只有主库存储空间的20%。
  • 100% 兼容MySQL语法,免去学习成本。DuckDB作为引擎集成到MySQL中,因此用户查询仍然使用MySQL语法,没有任何学习成本。
  • 无额外管理成本:DuckDB只读实例仍然是RDS MySQL实例,相比普通只读实例仅仅增加了一些MySQL参数。因此DuckDB和普通RDS MySQL实例一样管理、运维、监控。监控信息、慢日志、审计日志、RDS API等无任何差异。
  • 一键创建DuckDB只读实例,数据自动从InnoDB转成DuckDB,无额外操作。

DuckDB 引擎的实现


DuckDB只读实例使用上可以分为查询链路和Binlog复制链路。查询链路接受用户的查询请求,执行数据查询。Binlog复制链路连接到主实例进行Binlog复制。下面会分别从这两方面介绍其技术原理。

查询链路

查询执行流程如上图所示。InnoDB仅用来保存元数据和系统信息,如账号、配置等。所有的用户数据都存在DuckDB引擎中,InnoDB仅用来保存元数据和系统信息,如账号、配置等。

用户通过MySQL客户端连接到实例。查询到达后,MySQL首先进行解析和必要的处理。然后将SQL发送到DuckDB引擎执行。DuckDB执行完成后,将结果返回到Server层,server层将结果集转换成MySQL的结果集返回给客户。


查询链路最重要的工作就是兼容性的工作。DuckDB和MySQL的数据类型基本上是兼容的,但在语法和函数的支持上都和MySQL有比较大的差异,为此我们扩展了DuckDB的语法解析器,使其兼容MySQL特有的语法;重写了大量的DuckDB函数并新增了大量的MySQL函数,让常见的MySQL函数都可以准确运行。自动化兼容性测试平台大约17万SQL测试,显示兼容率达到99%。详细的兼容性情况见链接

Binlog复制链路

幂等回放

由于DuckDB不支持两阶段提交,因此无法利用两阶段提交来保证Binlog GTID和数据之间的一致性,也无法保证DDL操作中InnoDB的元数据和DuckDB的一致性。因此我们对事务提交的过程和Binlog的回放过程进行了改造,从而保证实例异常宕机重启后的数据一致性。

DML回放优化

由于DuckDB本身的实现上,有利于大事务的执行。频繁小事务的执行效率非常低,会导致严重的复制延迟。因此我们对Binlog回放做了优化,采用攒批(Batch)的方式进行事务重放。优化后可以达到30行/s的回放能力。在Sysbench压力测试中,能够做到没有复制延迟,比InnoDB的回放性能还高。

并行Copy DDL

MySQL中的一少部分DDL比如修改列顺序等,DuckDB不支持。为了保证复制的正常进行,我们实现了Copy DDL机制。DuckDB原生支持的DDL,采用Inplace/Instant的方式执行。当碰到DuckDB不支持的DDL时,会采用Copy DDL的方式创建一个新表替换原表。

Copy DDL采用多线程并行执行,执行时间缩短7倍。

DuckDB只读实例的性能

测试环境

ECS 实例 32Cpu、128G内存、ESSD PL1云盘 500GB

测试类型

TPC-H  SF100

2a36f0504303f92cb5884cb121f313aa.png


线上购买 RDS MySQL 实例就可以直接体验:

https://help.aliyun.com/zh/rds/apsaradb-rds-for-mysql/duckdb-based-analytical-instance/


欢迎您加入RDS产品技术用户交流钉钉群(106730000316),有任何问题和需求都可以在群内沟通。

点击查看官网专题页:RDS MySQL DuckDB 分析实例

相关文章
|
2月前
|
SQL 监控 关系型数据库
一键开启百倍加速!RDS DuckDB 黑科技让SQL查询速度最高提升200倍
RDS MySQL DuckDB分析实例结合事务处理与实时分析能力,显著提升SQL查询性能,最高可达200倍,兼容MySQL语法,无需额外学习成本。
|
2月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
|
2月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎,提供高性价比、稳定安全的云数据库服务,适用于多种行业与业务场景。
|
2月前
|
关系型数据库 MySQL 数据库
云时代MySQL:RDS与自建数据库的抉择
在云计算时代,选择合适的数据库部署方案至关重要。本文深入对比了AWS RDS与自建MySQL的优劣,帮助您在控制权、运维成本和业务敏捷性之间找到最佳平衡点。内容涵盖核心概念、功能特性、成本模型、安全性、性能优化、高可用方案及迁移策略,为您提供全面的决策参考。
|
3月前
|
关系型数据库 MySQL 程序员
从自建MySQL到阿里云RDS:程序员的数据库减负革命
如果你正在为自建MySQL数据库的高成本运维发愁,为凌晨三点的主从同步故障告警而崩溃,为开发团队频繁索要新测试库的要求感到窒息——是时候开启一场数据库的自我救赎了。 程序员更需构建"技术敏锐度+工程落地能力+跨域协作"的三维竞争力,通过创建技术组合形成差异化优势。企业应建立持续学习机制,提供AI沙盒环境促进技术转化。
|
5月前
|
存储 关系型数据库 数据库
高性能云盘:一文解析RDS数据库存储架构升级
性能、成本、弹性,是客户实际使用数据库过程中关注的三个重要方面。RDS业界率先推出的高性能云盘(原通用云盘),是PaaS层和IaaS层的深度融合的技术最佳实践,通过使用不同的存储介质,为客户提供同时满足低成本、低延迟、高持久性的体验。
|
6月前
|
存储 关系型数据库 MySQL
【免费动手教程上线】阿里云RDS MySQL推出大容量高性能存储:高性能本地盘(最高16TB存储空间)、高性能云盘(最高64TB存储空间)
阿里云RDS MySQL提供高性能本地盘与高性能云盘等存储方案,满足用户大容量、低延迟需求。高性能本地盘单盘最大16TB,IO延时微秒级;高性能云盘兼容ESSD特性,支持IO性能突发、BPE及16K原子写等能力。此外,阿里云还提供免费动手体验教程,帮助用户直观感受云数据库 RDS 存储性能表现。
|
9月前
|
关系型数据库 MySQL 数据库
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
随着数据量增长和业务扩展,单个数据库难以满足需求,需调整为集群模式以实现负载均衡和读写分离。MySQL主从复制是常见的高可用架构,通过binlog日志同步数据,确保主从数据一致性。本文详细介绍MySQL主从复制原理及配置步骤,包括一主二从集群的搭建过程,帮助读者实现稳定可靠的数据库高可用架构。
530 9
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
|
10月前
|
运维 关系型数据库 MySQL
体验领礼啦!体验自建数据库迁移到阿里云数据库RDS,领取桌面置物架!
「技术解决方案【Cloud Up 挑战赛】」上线!本方案介绍如何将自建数据库平滑迁移至云数据库RDS,解决业务增长带来的运维难题。通过使用RDS MySQL,您可获得稳定、可靠和安全的企业级数据库服务,专注于核心业务发展。完成任务即可领取桌面置物架,每个工作日限量50个,先到先得。
|
存储 C# 关系型数据库
“云端融合:WPF应用无缝对接Azure与AWS——从Blob存储到RDS数据库,全面解析跨平台云服务集成的最佳实践”
【8月更文挑战第31天】本文探讨了如何将Windows Presentation Foundation(WPF)应用与Microsoft Azure和Amazon Web Services(AWS)两大主流云平台无缝集成。通过具体示例代码展示了如何利用Azure Blob Storage存储非结构化数据、Azure Cosmos DB进行分布式数据库操作;同时介绍了如何借助Amazon S3实现大规模数据存储及通过Amazon RDS简化数据库管理。这不仅提升了WPF应用的可扩展性和可用性,还降低了基础设施成本。
356 0

相关产品

  • 云数据库 RDS MySQL 版
  • 云数据库 RDS
  • 推荐镜像

    更多
    下一篇
    oss云网关配置