【繁体图片文字识别】竖排的繁体图片文字识别翻译,竖排的繁体图片文字如何识别,竖排繁体图片识别后转横排,竖排的繁体识别比较友好的方法

本文涉及的产品
视觉智能开放平台,视频通用资源包5000点
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 竖排繁体文字识别系统适用于古籍数字化、港澳台文档、书法作品、历史档案及学术研究等场景,支持图像预处理、自动旋转、OCR识别、竖转横与繁转简。通过咕嘎OCR与OpenCC技术,实现高效精准的文字转换与编辑。

应用场景

竖排繁体文字识别系统主要适用于以下场景:
古籍文献数字化:古代书籍多为竖排繁体,需要转换为现代横排格式
港澳台地区文档处理:这些地区仍保留竖排繁体书写习惯
书法作品识别:传统书法作品多为竖排繁体
历史档案整理:民国及更早时期的档案多为竖排繁体
学术研究:研究古代文献时需要将竖排繁体转为可编辑文本

工具下载:

咕嘎竖排繁体简体中文图片OCR文字识别专用版
百度网盘:https://pan.baidu.com/s/1eH5IKRbNTD5JSkcIXNJTcw?pwd=8888
腾讯云盘:https://share.weiyun.com/tUsrbtHp

原文参考:
https://mp.weixin.qq.com/s/D8QARsz0xvWRaAfaJtLqKQ

详细代码实现

  1. 图像预处理
    import cv2
    import numpy as np
    from PIL import Image

def preprocess_image(image_path):

# 读取图像
img = cv2.imread(image_path)

# 转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化处理
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

# 去噪
denoised = cv2.fastNlMeansDenoising(binary, h=10)

# 边缘增强
kernel = np.ones((2, 2), np.uint8)
enhanced = cv2.morphologyEx(denoised, cv2.MORPH_CLOSE, kernel)

return enhanced
  1. 竖排文字检测与旋转
    def detect_text_direction(image):

    使用OpenCV检测文字方向

    coords = np.column_stack(np.where(image > 0))
    angle = cv2.minAreaRect(coords)[-1]

    if angle < -45:

     angle = -(90 + angle)
    

    else:

     angle = -angle
    

    如果角度小于15度,认为是横排,需要旋转90度

    if abs(angle) < 15:

     return 90
    

    return 0

def rotate_image(image, angle):
(h, w) = image.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
return rotated

  1. 使用咕嘎OCR进行竖排繁体识别
    import requests
    import json
    import base64

def gugu_ocr_vertical(image_path, lang='zh-Hant'):

# 读取并预处理图像
img = preprocess_image(image_path)

# 检测文字方向并旋转
angle = detect_text_direction(img)
rotated_img = rotate_image(img, angle)

# 转换为base64
_, buffer = cv2.imencode('.png', rotated_img)
img_base64 = base64.b64encode(buffer).decode('utf-8')

# 调用咕嘎OCR API
url = "https://api.guguocr.com/v1/recognize"
headers = {'Content-Type': 'application/json'}
payload = {
    'image': img_base64,
    'lang': lang,
    'vertical': True,  # 指定为竖排文字
    'config': {
        'preserve_layout': False,
        'output_format': 'plain'
    }
}

response = requests.post(url, headers=headers, data=json.dumps(payload))
result = response.json()

if result['code'] == 200:
    return result['data']['text']
else:
    raise Exception(f"OCR识别失败: {result['message']}")
  1. 竖排转横排处理
    def vertical_to_horizontal(text):

    竖排文本通常是按列排列,需要转换为行排列

    lines = text.split('\n')
    max_len = max(len(line) for line in lines)

    填充各行使其长度一致

    padded_lines = [line.ljust(max_len) for line in lines]

    转置矩阵实现竖排转横排

    horizontal_text = '\n'.join(

     ''.join(padded_lines[row][col] for row in range(len(padded_lines)))
     for col in range(max_len)
    

    )

    return horizontal_text

  2. 繁体转简体
    from opencc import OpenCC

def traditional_to_simplified(text):
cc = OpenCC('t2s') # 繁体转简体
return cc.convert(text)

  1. 主流程整合
    def process_vertical_text(image_path, output_format='horizontal_simplified'):

    1. OCR识别

    traditional_text = gugu_ocr_vertical(image_path)

    2. 竖排转横排

    if 'horizontal' in output_format:

     text = vertical_to_horizontal(traditional_text)
    

    else:

     text = traditional_text
    

    3. 繁体转简体

    if 'simplified' in output_format:

     text = traditional_to_simplified(text)
    

    return text
    优化与总结
    优化策略
    ​​性能优化​​:
    实现本地缓存机制,避免重复处理相同图片
    使用多线程处理批量图片
    对小型图片进行适当放大以提高识别率
    ​​识别率优化​​:
    结合多种OCR引擎结果进行投票选择
    实现后处理校正算法,基于统计语言模型修正识别错误
    针对特定古籍字体训练专用模型
    ​​用户体验优化​​:
    添加实时预览功能,显示识别结果与原始图片对比
    实现拖拽上传和多文件批量处理
    添加历史记录功能,方便用户查看之前的处理记录
    完整示例代码
    import cv2
    import numpy as np
    import requests
    import json
    import base64
    from PIL import Image
    from opencc import OpenCC

class VerticalTextOCR:
def init(self):
self.cc = OpenCC('t2s')

def preprocess_image(self, image_path):
    img = cv2.imread(image_path)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    denoised = cv2.fastNlMeansDenoising(binary, h=10)
    kernel = np.ones((2, 2), np.uint8)
    enhanced = cv2.morphologyEx(denoised, cv2.MORPH_CLOSE, kernel)
    return enhanced

def detect_text_direction(self, image):
    coords = np.column_stack(np.where(image > 0))
    angle = cv2.minAreaRect(coords)[-1]
    if angle < -45:
        angle = -(90 + angle)
    else:
        angle = -angle
    return 90 if abs(angle) < 15 else 0

def rotate_image(self, image, angle):
    (h, w) = image.shape[:2]
    center = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
    rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
    return rotated

def gugu_ocr(self, image_path, lang='zh-Hant'):
    img = self.preprocess_image(image_path)
    angle = self.detect_text_direction(img)
    rotated_img = self.rotate_image(img, angle)

    _, buffer = cv2.imencode('.png', rotated_img)
    img_base64 = base64.b64encode(buffer).decode('utf-8')

    url = "https://api.guguocr.com/v1/recognize"
    headers = {'Content-Type': 'application/json'}
    payload = {
        'image': img_base64,
        'lang': lang,
        'vertical': True,
        'config': {
            'preserve_layout': False,
            'output_format': 'plain'
        }
    }

    response = requests.post(url, headers=headers, data=json.dumps(payload))
    result = response.json()

    if result['code'] == 200:
        return result['data']['text']
    else:
        raise Exception(f"OCR识别失败: {result['message']}")

def vertical_to_horizontal(self, text):
    lines = text.split('\n')
    max_len = max(len(line) for line in lines)
    padded_lines = [line.ljust(max_len) for line in lines]
    horizontal_text = '\n'.join(
        ''.join(padded_lines[row][col] for row in range(len(padded_lines)))
        for col in range(max_len)
    )
    return horizontal_text

def process(self, image_path, output_format='horizontal_simplified'):
    traditional_text = self.gugu_ocr(image_path)

    if 'horizontal' in output_format:
        text = self.vertical_to_horizontal(traditional_text)
    else:
        text = traditional_text

    if 'simplified' in output_format:
        text = self.cc.convert(text)

    return text

使用示例

if name == "main":
ocr = VerticalTextOCR()
result = ocr.process("ancient_book_page.png")
print("识别结果:")
print(result)
总结
本系统实现了竖排繁体图片文字的识别、旋转、横排转换和繁简转换的全流程处理。

关键点包括:

使用图像预处理技术提高OCR识别率自动检测文字方向并进行适当旋转利用咕嘎OCR的竖排文字识别能力实现竖排到横排的矩阵转换算法整合OpenCC实现高质量的繁简转换未来可进一步优化的方向包括:添加深度学习模型来提高古籍异体字的识别率、实现更智能的排版保留功能、开发桌面版和移动端应用、添加批处理和自动化工作流功能、此系统特别适合古籍数字化、历史研究、跨地区文档处理等场景,能够有效提高竖排繁体文字的处理效率。

相关文章
|
4月前
|
文字识别 前端开发 数据可视化
【图片识别改名】图片文件区域OCR识别并自动重命名,根据指定区域识别文字批量改名,阿里云的文字识别方案
本系统通过OCR技术实现图片和PDF文件中关键信息的批量识别与智能重命名,适用于档案管理、电商商品管理、学术研究及企业文档处理等场景。支持区域选择、识别参数设置及自定义重命名规则,提供可视化界面与进度跟踪功能,提升文件整理与管理效率。
500 5
|
安全 Python
Python Web 开发: 在 Flask 中如何处理文件上传?
Python Web 开发: 在 Flask 中如何处理文件上传?
436 0
|
2月前
|
人工智能 JSON 算法
抖音电商 API 赋能,抖音平台达人合作数据精准对接
抖音电商API为品牌与达人合作提供精准数据对接,提升匹配效率与营销精准度,助力电商生态智能化升级。
150 1
|
5月前
|
移动开发 Dart 前端开发
《社交应用动态表情:RN与Flutter实战解码》
React Native依托JavaScript和React,通过便捷调用原生模块实现动态表情的流畅展示与交互;其组件化开发模式提升了代码可维护性,活跃社区提供的第三方库简化了复杂解析工作。Flutter则以Dart语言为基础,利用自绘制UI体系和Skia引擎实现卓越动画效果,异步编程特性保障多任务流畅运行,热重载功能显著提高开发效率。两者在实现动态表情时均需应对资源管理、格式解析、性能优化及安全性等挑战。动态表情作为社交应用的核心功能,其发送与解析能力已成为衡量用户体验的重要标准,而React Native和Flutter凭借各自技术优势为开发者提供了高效解决方案。
91 17
|
6月前
|
文字识别 BI
【工具教程】批量PDF和图片OCR识别指定区域文字自动改图片名字,多个区域一次性批量识别改名批量重命名
本内容介绍了一款用于企业档案、医院病历及办公文件管理的图片和PDF文字识别工具。通过框选识别区域,软件可批量提取关键信息,实现文件重命名或导出为表格,极大提升管理效率。支持图片与PDF两种模式,操作简单,适用于合同、病历、报告等场景。提供详细步骤指导,包含区域设置、文件导入、批量处理及结果校验等功能。
921 8
|
9月前
|
编解码 文字识别 自然语言处理
如何使用OCR技术批量识别图片中的文字并重命名文件,OCR 技术批量识别图片中的文字可能出现的错误
### 简介 【批量识别图片内容重命名】工具可批量识别图片中的文字并重命名文件,方便高效处理大量图片。然而,OCR 技术面临字符识别错误(如形近字混淆、生僻字识别不佳)、格式错误(段落错乱、换行问题)和语义理解错误等挑战。为提高准确性,建议提升图片质量、选择合适的 OCR 软件及参数,并结合自动校对与人工审核,确保最终文本的正确性和完整性。
1015 12
如何使用OCR技术批量识别图片中的文字并重命名文件,OCR 技术批量识别图片中的文字可能出现的错误
|
8月前
|
文字识别 Serverless 开发工具
【全自动改PDF名】批量OCR识别提取PDF自定义指定区域内容保存到 Excel 以及根据PDF文件内容的标题来批量重命名
学校和教育机构常需处理成绩单、报名表等PDF文件。通过OCR技术,可自动提取学生信息并录入Excel,便于统计分析和存档管理。本文介绍使用阿里云服务实现批量OCR识别、内容提取、重命名及导出表格的完整步骤,包括开通相关服务、编写代码、部署函数计算和设置自动化触发器等。提供Python示例代码和详细操作指南,帮助用户高效处理PDF文件。 链接: - 百度网盘:[链接](https://pan.baidu.com/s/1mWsg7mDZq2pZ8xdKzdn5Hg?pwd=8866) - 腾讯网盘:[链接](https://share.weiyun.com/a77jklXK)
838 5
|
8月前
|
文字识别 BI
【图片型PDF】批量识别扫描件PDF指定区域局部位置内容,将识别内容导出Excel表格或批量改名文件,基于阿里云OCR对图片型PDF识别改名案例实现
在医疗和政务等领域,图片型PDF文件(如病历、报告、公文扫描件)的处理需求广泛。通过OCR技术识别这些文件中的文字信息,提取关键内容并保存为表格,极大提高了信息管理和利用效率。本文介绍一款工具——咕嘎批量OCR系统,帮助用户快速处理图片型PDF文件,支持区域识别、内容提取、导出表格及批量改名等功能。下载工具后,按步骤选择处理模式、进行区域采样、批量处理文件,几分钟内即可高效完成数百个文件的处理。
818 8
|
文字识别
【提取翻译竖排文字日文图片的软件】竖排的日语图片文字识别翻译,竖排的日语图片文字如何识别,竖排日语图片识别后转横排,竖排的日语识别比较友好的方法
这款软件专攻竖排日语图片文字识别,支持自动横排转换,能准确提取左右排版文字,并翻译成中文。用户可从百度网盘或腾讯云盘下载。功能包括图片打开、拖拽识别、截屏拾取、顺序识别、文字导出、快捷搜索及窗体操作。识别时注意保持文字等高以减少误差。附带视频教程(BV1vW4y1p7st)帮助快速上手。
2299 1
[PDF提取重命名]提取识别文字并对PDF文件批量重命名,提取PDF指定可复制的内容并批量重命名PDF,批量PDF文档指定识别提取区域
本文介绍一款实用工具,能快速从可复制内容的PDF中提取指定区域信息并据此重命名文件。设置提取坐标及导入PDF文档、设定新文件名后启动提取流程,即可高效批量处理。保存坐标设置以便重复使用,适用于需频繁修改大量PDF文件名的场景。
1057 0
[PDF提取重命名]提取识别文字并对PDF文件批量重命名,提取PDF指定可复制的内容并批量重命名PDF,批量PDF文档指定识别提取区域

热门文章

最新文章