AI虫子种类识别数据集(近3000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】

简介: 本数据集包含近3000张已划分、标注的虫子图像,适用于YOLO系列模型的目标检测与分类任务。涵盖7类常见虫子,标注采用YOLO格式,结构清晰,适合农业智能化、小样本学习及边缘部署研究。数据来源多样,标注精准,助力AI虫害识别落地应用。

AI虫子种类识别数据集(近3000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】

数据集已划分为 traintestval 三个子集,共计近 3000张高清图像,每张图像都包含清晰的目标注释文件(YOLO格式),非常适合用于深度学习模型中的目标检测与分类任务,特别是YOLOv5、YOLOv8、YOLOv11等模型的训练与测试。

背景

在农业智能化与生态研究中,虫害识别一直是计算机视觉中的重要应用方向。不同种类的昆虫对作物、林木等有着截然不同的影响,及时准确识别虫子种类对于灾害预警、防治投放具有实际意义。

然而,公开可用的虫子图像数据集较为稀缺,尤其是面向小样本、边缘设备部署场景下的高质量虫子目标检测数据集更是凤毛麟角。因此,我们整理并清洗了一个近3000张图片的虫子识别数据集,涵盖多种常见虫子种类,标注标准规范,便于训练YOLO类目标检测算法。

数据集概述

数据集中每张图像都配有YOLO格式标注文件,标注内容包括虫子在图像中的类别编号和边界框(bounding box)坐标信息,适合用于目标检测训练任务。

dataset/
├── images/
│   ├── train/
│   ├── val/
│   └── test/
├── labels/
│   ├── train/
│   ├── val/
│   └── test/

该结构简单明晰,开箱即用,便于接入各种深度学习训练流程。

image-20250719152154716

image-20250719152213319

数据集详情

  • 图像总数:近3000张
  • 图像格式:JPG(部分为PNG)
  • 分辨率:大多在720p以上
  • 注释格式:YOLO格式 .txt,与图像同名
  • 类别数量:共计 7类常见虫子
  • 数据划分
    • train: 2089张
    • val: 447张
    • test: 448张

数据来源包括实地拍摄图像、公开虫子图像资源、手工清洗处理后的标注数据。所有标注均由专业人员完成,确保了高准确性和实用性。

所有类别均有丰富的样本图像,部分小样本类别适合用于数据增强、Few-shot等研究场景。

每个样本图像均包含虫体在图像中的 边界框(bounding box)坐标,并指明具体类别编号,完全遵循YOLO格式。例如某张图像的标注文件内容为:

3 0.512 0.439 0.187 0.274

表示第4类虫子在图像中的相对位置与大小。

train_batch2

train_batch0

适用场景

本数据集适用于多种计算机视觉研究与实际应用场景:

  • ✅ YOLOv5 / YOLOv8 / YOLOv11等目标检测模型训练
  • ✅ 多类虫子识别分类研究
  • ✅ 数据增强/迁移学习实验
  • ✅ 小样本学习 / 农业害虫识别模型开发
  • ✅ AIoT边缘设备部署测试

同时该数据集也适合用作学生科研课题、AI竞赛、学术研究中的标准基准测试集。

image-20250719153144863

结语

本数据集的发布旨在推动AI在生态虫害识别领域的落地应用,为模型提供高质量、结构清晰的数据资源。我们鼓励大家在遵守开源协议的前提下进行使用、训练与改进,也欢迎反馈优化建议。

后续我们也将提供基于该数据集的YOLO训练脚本PyTorch使用示例轻量化部署方案等配套资源,助力各类AI虫害识别项目高效落地。

数据集分享

通过网盘分享的文件:AI虫子种类识别数据集

链接: https://pan.baidu.com/s/1pKwBxIptk3PE6OUk5HxzCw?pwd=4ih3

相关文章
|
1月前
|
机器学习/深度学习 人工智能 监控
河道塑料瓶识别标准数据集 | 科研与项目必备(图片已划分、已标注)| 适用于YOLO系列深度学习分类检测任务【数据集分享】
随着城市化进程加快和塑料制品使用量增加,河道中的塑料垃圾问题日益严重。塑料瓶作为河道漂浮垃圾的主要类型,不仅破坏水体景观,还威胁水生生态系统的健康。传统的人工巡查方式效率低、成本高,难以满足实时监控与治理的需求。
|
1月前
|
机器学习/深度学习 传感器 人工智能
火灾火焰识别数据集(2200张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在人工智能和计算机视觉的快速发展中,火灾检测与火焰识别逐渐成为智慧城市、公共安全和智能监控的重要研究方向。一个高质量的数据集往往是推动相关研究的核心基础。本文将详细介绍一个火灾火焰识别数据集,该数据集共包含 2200 张图片,并已按照 训练集(train)、验证集(val)、测试集(test) 划分,同时配有对应的标注文件,方便研究者快速上手模型训练与评估。
火灾火焰识别数据集(2200张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
1月前
|
机器学习/深度学习 人工智能 自动驾驶
7种交通场景数据集(千张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在智能交通与自动驾驶技术快速发展的今天,如何高效、准确地感知道路环境已经成为研究与应用的核心问题。车辆、行人和交通信号灯作为城市交通系统的关键元素,对道路安全与交通效率具有直接影响。然而,真实道路场景往往伴随 复杂光照、遮挡、多目标混杂以及交通信号状态多样化 等挑战,使得视觉识别与检测任务难度显著增加。
|
1月前
|
机器学习/深度学习 人工智能 监控
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
坐姿标准好坏姿态数据集的发布,填补了计算机视觉领域在“细分健康行为识别”上的空白。它不仅具有研究价值,更在实际应用层面具备广阔前景。从青少年的健康教育,到办公室的智能提醒,再到驾驶员的安全监控和康复训练,本数据集都能发挥巨大的作用。
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
16天前
|
机器学习/深度学习 数据采集 编解码
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
|
8月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
321 22
|
5月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
638 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
9月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
682 6
|
7月前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
231 40