训练结果阅读方法

简介: 如何正确解读YOLO算法训练结果的各项指标

https://www.cnblogs.com/itzixueba/p/18410587

from ultralytics import YOLO
from pathlib import Path
import torch,time
import openvino as ov
import cv2

model_path = Path(r"./best-Copy1_openvino_model/best-Copy1.xml")
image_path = Path( r"./00116.jpg")

yolo11 = YOLO("best-Copy1.pt", task="detect")
result = yolo11(image_path, show=True)
result[0].show()

core = ov.Core()
device = "CPU"
config = {"PERFORMANCE_HINT": "LATENCY"}

compiled_model = core.compile_model(model_path, device, config)

def ov_infer(*args):
result = compiled_model(args)
return torch.from_numpy(result[0])

yolo11.predictor.inference = ov_infer

img = cv2.imread(image_path)
result = yolo11.predict(img)
result[0].show()

time.sleep(6)

相关文章
|
人工智能 API 开发工具
YOLOV11 使用流程
本内容整理了YOLO V11的常用代码语句,涵盖YOLO模型下载、数据集划分、模型训练与推理优化等关键步骤,适用于目标检测任务。
|
Python
Pyside6-第一篇-创建第一个窗口
Pyside6-第一篇-创建第一个窗口
898 0
|
机器学习/深度学习 数据采集 自然语言处理
ModelScope保姆式教程带你玩转语言生成模型
PALM预训练语言生成模型是针对实际场景中常见的文本生成需求所设计的一个模型。模型利用大量无监督数据,通过结合自编码和自回归任务进行预训练,更贴合下游生成任务所同时需要的理解和生成能力。
34520 4
ModelScope保姆式教程带你玩转语言生成模型
|
存储 SQL 运维
一步到位,服务器监控就是这么简单
对于运维的日常工作来说,服务器监控是必须且最基础的一项内容。在企业基础设施运维过程中,管理员必须能够掌握所有服务器的运行状况,以便及时发现问题,尽可能减少故障的发生。本期为大家介绍如何使用阿里云SLS来快速构建一套完整的服务器/主机基础指标实时监控方案。
5656 0
 一步到位,服务器监控就是这么简单
|
5月前
|
监控 数据可视化 计算机视觉
GitHub超 30000+ star 背后,这款 Supervision 工具为何让视觉开发者欲罢不能?
Roboflow 的 Supervision 是一个基于 MIT 协议的开源视觉辅助库,已获 GitHub 超 30,000 星标。它可解决视觉项目中的可视化、跟踪、计数、格式转换等常见问题,支持 YOLO、Detectron2、Transformers 等模型,适用于视频分析、区域统计、数据集处理等场景。其核心功能包括通用 Detections 类、多种 Annotator 可视化工具、区域统计工具(LineZone & PolygonZone)、视频跟踪与平滑处理、KeyPoints 跟踪、性能指标计算等。
319 40
|
机器学习/深度学习 人工智能 监控
单车、共享单车已标注数据集(图片已划分、已标注)|适用于深度学习检测任务【数据集分享】
数据是人工智能的“燃料”。一个高质量、标注精准的单车与共享单车数据集,不仅能够推动学术研究的进步,还能为智慧交通、智慧城市的建设提供有力支撑。 在计算机视觉领域,研究者们常常会遇到“数据鸿沟”问题:公开数据集与真实业务需求之间存在不匹配。本次分享的数据集正是为了弥补这一不足,使得研究人员与工程师能够快速切入单车检测领域,加速模型从实验室走向真实应用场景。
|
11月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【损失函数篇】| WIoU v3:针对低质量样本的边界框回归损失函数
RT-DETR改进策略【损失函数篇】| WIoU v3:针对低质量样本的边界框回归损失函数
527 14
|
5月前
|
机器学习/深度学习 自动驾驶 算法
道路表面缺陷数据集(裂缝/井盖/坑洼)(6000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
随着城市化与交通运输业的快速发展,道路基础设施的健康状况直接关系到出行安全与城市运行效率。长期高强度的使用、气候变化以及施工质量差异,都会导致道路表面出现裂缝、坑洼、井盖下沉及修补不良等缺陷。这些问题不仅影响驾驶舒适度,还可能引发交通事故,增加道路养护成本。
道路表面缺陷数据集(裂缝/井盖/坑洼)(6000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
7月前
|
API 开发工具 计算机视觉
YOLO11 语句整理
本内容介绍基于YOLOv11模型的开发流程,涵盖模型下载、安装依赖库、训练与推理、模型转换为OpenVINO格式及部署。通过Ultralytics工具包实现模型加载、训练和预测,并使用OpenVINO优化推理性能。此外,提供数据集划分方法,按指定比例生成训练集、验证集和测试集,确保数据准备规范化,提升模型训练效果与实用性。