从理论到应用:AI搜索MCP的最佳实践案例解析

简介: 本文深入探讨了如何通过 MCP 协议让大语言模型(LLM)高效调用外部工具,并结合多个实际场景展示了 MCP 在 AI 应用中的价值和未来潜力。

背景

那些LLM不知道的事

开篇先尝试直接问LLM一个问题,“今天天气如何”。

然而,并未能从LLM获得期望回答。原因也很简单,今天是哪天?天气是哪里的天气?这些问题对于LLM来说统统不得而知。


因此,我们很自然地想到,是不是能让LLM自己学会用工具,哪里不会点哪里呢?

当LLM学会用工具

  • “让LLM自己学会用工具,来解答用户问题。”

上面这句话中,出现了三个角色,“用户”、“工具”、“LLM”,以及隐藏的第四个角色——将这一切粘合起来的“主控程序”。

关于四者的交互流程,我从百炼找了张图,供以参考:

MCP干嘛来了

  • 没有MCP,我要怎么做

按着Agent+FunctionCall的模式,我设计了工具schema,走通了LLM的服务调用,终于让LLM学会了用工具。但随着工具越来越多、工具调用与LLM耦合得越来越深,不管是维护还是迭代,都会消耗大量的精力。

那么,问题来了:

  • 能不能实现Agent与Tools的解耦?
  • 能不能能统一不同Tools的调用协议,让模型快速接入?
  • 能不能实现Tools的共享?

- 有了MCP,我会怎么做

现在有了MCP,一切都好起来了:

  • Agent和Tools,我可以分开维护了。
  • 再多的Tools,我用"list_tools"+"call_tool"就解决了。
  • 我可以分享自己的Tools,也可以快速接入别人的Tools了。

近距离看看MCP

MCP is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications. Just as USB-C provides a standardized way to connect your devices to various peripherals and accessories, MCP provides a standardized way to connect AI models to different data sources and tools.

MCP架构中的角色主要有以下几种:

  • MCP Hosts: 相当于上文提到的“主控程序”,比如Claude Desktop、IDE等。
  • MCP Clients: 服务调用的客户端,通常会被集成到Host中执行list_tools、call_tool等操作。
  • MCP Servers: 服务调用的服务端,通常在此定义tools、prompts、resources等。
  • Local Data Sources: 本地数据。
  • Remote Services: 远端服务。

ps:写了个mcp demo,就想让LLM告诉我,今天天气到底如何?

mcp = FastMCP("Demo")

@mcp.tool(
    name="get_current_time",
    description="获取当前时间",
)
def get_current_time():
    """
       获取当前时间并进行格式化展示
       :return:
    """
    now = datetime.datetime.now()
    formatted_time = now.strftime("%Y-%m-%d %H:%M:%S")
    return formatted_time


@mcp.tool(
    name="get_location",
    description="获取当前地点",
)
def get_location():
    """
       获取当前地点
       :return:
    """
    try:
        response = requests.get("http://ip-api.com/json/")
        data = response.json()

        if data["status"] == "success":
            location_info = {
                "country": data.get("country", ""),
                "region": data.get("regionName", ""),
                "city": data.get("city", "")
            }
            return json.dumps(location_info, ensure_ascii=False)
        else:
            return json.dumps({"error": "无法获取地理位置"}, ensure_ascii=False)
    except Exception as e:
        return json.dumps({"error": str(e)}, ensure_ascii=False)

AI搜索怎么玩MCP

场景一:文件解析与总结

1. 前置准备

1.1 注册 AI搜索平台[1],获取 api-key[2]

1.2 vscode + cline

1.3 cline配置llm接口

API Provider选择 OpenAI Compatible

Base URL设为:

https://dashscope.aliyuncs.com/compatible-mode/v1

1.4 安装uv,管理python环境

curl -LsSf https://astral.sh/uv/install.sh | sh 或者 pip install uv

2. cline配置mcp server

2.1 下载 alibabacloud-opensearch-mcp-server[3]

2.2 配置mcp server

{
  "mcpServers": {
    "aisearch-mcp-server": {
      "command": "uv",
      "args": [
        "--directory",
        "/path/to/aisearch-mcp-server",
        "run",
        "aisearch-mcp-server"
      ],
      "env": {
        "AISEARCH_API_KEY": "<AISEARCH_API_KEY>",
        "AISEARCH_ENDPOINT": "<AISEARCH_ENDPOINT>"
      }
    }
  }
}

3. 任务演示

此处为语雀视频卡片,点击链接查看:aisearch_mcp_demo.mp4

image.png

4. 业务价值

  • 降低接入成本,提升用户体验:支持用户通过标准化方式快速集成AI搜索平台的服务,降低了开发门槛和接入成本,同时提升了用户体验。
  • 提高系统灵活性:用户可根据业务需求灵活配置AI服务,适应多样化的业务需求。
  • 支持自然语言交互与智能化操作:用户可通过简单的自然语言指令进行智能化任务编排,完成复杂的任务执行。
  • 促进创新和业务增长:可通过MCP的标准化集成,进行快速试错与迭代,加速产品上线周期。

场景二:向量检索及排序

1. 前置准备

(新增)开通 opensearch向量检索版[4],构建一张向量表

(其他)同场景一

2. cline配置mcp server

2.1 下载 alibabacloud-opensearch-mcp-server

2.2 配置mcp server

{
  "mcpServers": {
    "aisearch-mcp-server": {
      "command": "uv",
      "args": [
        "--directory",
        "/path/to/aisearch-mcp-server",
        "run",
        "aisearch-mcp-server"
      ],
      "env": {
        "AISEARCH_API_KEY": "<AISEARCH_API_KEY>",
        "AISEARCH_ENDPOINT": "<AISEARCH_ENDPOINT>"
      }
    },
    "opensearch-vector-mcp-server": {
      "command": "uv",
      "args": [
        "--directory",
        "/path/to/opensearch-vector-mcp-server",
        "run",
        "opensearch-vector-mcp-server"
      ],
      "env": {
        "OPENSEARCH_VECTOR_ENDPOINT": "http://ha-cn-***.public.ha.aliyuncs.com",
        "OPENSEARCH_VECTOR_USERNAME": "<username>",
        "OPENSEARCH_VECTOR_PASSWORD": "<password>",
        "OPENSEARCH_VECTOR_INSTANCE_ID": "ha-cn-***",
        "OPENSEARCH_VECTOR_INDEX_NAME": "<Optional: index in vector table>",
        "AISEARCH_API_KEY": "<Optional: AISEARCH_API_KEY for embedding>",
        "AISEARCH_ENDPOINT": "<Optional: AISEARCH_ENDPOINT for embedding>"
      }
    }
  }
}

3. 任务演示

4. 业务价值

  • 扩展AI应用场景:增强Agent向量检索能力,支持动态扩展和无缝集成。
  • 优化用户体验:提供更精准的向量搜索服务,降低使用成本。

场景三:Elasticsearch智能检索

1. 前置准备

(新增)开通 Elasticsearch[5],创建一份索引并写入测试数据

(其他)同场景一

2. cline配置mcp server

2.1 参考 elasticsearch-mcp-server[6]

2.2 配置mcp server

{
  "mcpServers": {
    "elasticsearch-mcp-server": {
      "command": "npx",
      "args": [
        "-y",
        "@elastic/mcp-server-elasticsearch"
      ],
      "env": {
        "ES_URL": "http://es-cn-***.public.elasticsearch.aliyuncs.com:9200",
        "ES_USERNAME": "<USERNAME>",
        "ES_PASSWORD": "<PASSWORD>"
      }
    }
  }
}

3. 任务演示

4. 业务价值

  • 提升数据搜索和分析能力:支持高效的全文搜索、实时分析和复杂查询。
  • 优化用户体验:提供更精准的搜索结果和个性化服务。

参考链接:

[1]https://help.aliyun.com/zh/open-search/activate-services-and-create-api-key?utm_content=g_1000405161

[2]https://help.aliyun.com/zh/open-search/api-keys-management?utm_content=g_1000405162

[3]https://github.com/aliyun/alibabacloud-opensearch-mcp-server?tab=readme-ov-file

[4]https://help.aliyun.com/zh/open-search/vector-search-edition/vector-search-product-overview/?utm_content=g_1000405163

[5]https://help.aliyun.com/zh/es/user-guide/getting-started?utm_content=g_1000405164

[6]https://github.com/elastic/mcp-server-elasticsearch



来源  |  阿里云开发者公众号

作者  |  是溪

相关文章
|
1月前
|
人工智能 自然语言处理 物联网
MCP+LLM+Agent:企业AI落地的新基建设计
MCP+LLM+Agent构建企业AI黄金三角架构,破解数据孤岛、工具碎片化与决策滞后难题。LLM负责智能决策,Agent实现自动执行,MCP打通数据与工具,助力企业实现从智能思考到业务闭环的跃迁。
|
人工智能 缓存 NoSQL
【深度】企业 AI 落地实践(四):如何构建端到端的 AI 应用观测体系
本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
GPT为定制AI应用工程师转型第一周学习计划
本计划帮助开发者快速入门AI领域,首周涵盖AI基础理论、Python编程及PyTorch实战。前两天学习机器学习、深度学习与Transformer核心概念,掌握LLM工作原理。第三至四天快速掌握Python语法与Jupyter使用,完成基础编程任务。第五至七天学习PyTorch,动手训练MNIST手写识别模型,理解Tensor操作与神经网络构建。
114 0
|
26天前
|
数据采集 人工智能 定位技术
分享一个开源的MCP工具使用的AI Agent 支持常用的AI搜索/地图/金融/浏览器等工具
介绍一个开源可用的 MCP Tool Use 通用工具使用的 AI Agent (GitHub: https://github.com/AI-Agent-Hub/mcp-marketplace ,Web App https://agent.deepnlp.org/agent/mcp_tool_use,支持大模型从Open MCP Marketplace (http://deepnlp.org/store/ai-agent/mcp-server) 的1w+ 的 MCP Server的描述和 Tool Schema 里面,根据用户问题 query 和 工具 Tool描述的 相关性,选择出来可以满足
|
24天前
|
存储 人工智能 安全
【阿里云基础设施 AI Tech Day】 AI Infra 建设方案及最佳实践沙龙圆
聚焦 AI Infra 建设方案及最佳实践,「智驱未来,云网随行:AI Infra 建设方案及最佳实践」沙龙阿里云基础设施 AI Tech Day 北京站于 8 月 8 日下午在北京全球创新社区顺利举办,活动现场吸引了来自月之暗面、字节、小米、爱奇艺、360、雪球、猿辅导、奥迪等 16 家相关 AI 领域领先企业或有AI建设诉求企业的 32 名业务/技术骨干参与。本次技术沙龙旨在聚焦企业建设高效、高可用的 AI Infra,深入解析 AI 驱动的原子能力与场景化架构设计,分享从基础网络建设、算力池化、存储调度,以及 VPC RDMA 性能优化、Agent 智能体出海等场景的全链路方案,助力企业
128 1
|
25天前
|
人工智能 自然语言处理 安全
Python构建MCP服务器:从工具封装到AI集成的全流程实践
MCP协议为AI提供标准化工具调用接口,助力模型高效操作现实世界。
289 1
|
25天前
|
人工智能 开发者
OpenVINO™ DevCon中国系列工作坊:AI模型优化与端侧应用落地
解锁AI高效部署新路径,共赴智能创新璀璨未来
62 1
|
1月前
|
存储 人工智能 机器人
别再只做聊天机器人:AI 应用商业闭环的工程落地指南,免费体验中
本文介绍了如何通过阿里云百炼平台创建一个星座运势分析AI智能体,并集成支付宝MCP服务实现支付闭环。解决AI产品无法直接变现的问题,完成“服务-支付-交易”全流程闭环,帮助开发者快速实现商业化。

热门文章

最新文章