破界·融合·进化:解码DataWorks与Hologres的湖仓一体实践

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
大数据开发治理平台DataWorks,资源组抵扣包 750CU*H
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 基于阿里云DataWorks与实时数仓Hologres,提供统一的大数据开发治理平台与全链路实时分析能力。DataWorks支持多行业数据集成与管理,Hologres实现海量数据的实时写入与高性能查询分析,二者深度融合,助力企业构建高效、实时的数据驱动决策体系,加速数字化升级。

DataWorks基于阿里云ODPS/EMR/CDP等大数据引擎,为数据仓库/数据湖/湖仓一体等解决方案提供统一的全链路大数据开发治理平台。作为阿里巴巴数据中台的建设者,DataWorks从2009年起不断沉淀阿里巴巴大数据建设方法论,同时与数万名政务/金融/零售/互联网/能源/制造等客户携手,助力产业数字化升级。

Hologres是阿里云自研一站式实时数仓,统一数据平台架构,支持海量结构化/半结构化数据的实时写入、实时更新、实时加工、实时分析,支持标准SQL(兼容PostgreSQL协议),无缝对接主流BI工具,支持OLAP查询、即席分析、在线服务、向量计算多个场景,分析性能打破TPC-H世界记录,与MaxCompute、Flink、DataWorks深度融合,提供离在线一体化全栈数仓解决方案。

一、方案概述

本方案基于阿里云实时数仓Hologres和DataWorks数据集成,通过简单的产品操作即可完成数据库RDS实时同步数据到Hologres,并通过Hologres强大的查询分析性能,完成一站式高性能的OLAP数据分析。
image.png

二、方案部署

1、创建专有网络VPC和交换机

为确保后续任务的网络连通,请务必保证Hologres与DataWorks资源组使用同⼀个VPC。

image.png

image.png

在创建专有网络页面,您可查看到创建的专有网络VPC和交换机的ID、实例名称等信息。
image.png

2、试用实时数仓Hologres。新用户可以有3个月免费试用期。

image.png

在实时数仓Hologres面板,根据如下参数说明进行配置,未提及的参数保持默认即可,单击立即试用。
image.png

image.png

大概需要5-10分钟,在实例列表页面,等待运行状态变为运行正常,即可正常使用。
image.png

3、开通DataWorks

image.png

image.png

image.png
创建工作空间列表。注意需要类似XXXX_123这种格式,即字母、数字、下划线都用到才可以。
image.png

image.png

在资源组列表页面,等待目标资源组的状态变为运行中,即可正常使用资源组。
image.png

4、创建公网NAT

首次使用NAT网关时,在创建公网NAT网关页面关联角色创建区域,单击创建关联角色。角色创建成功后即可创建NAT网关。
image.png

image.png
image.png

image.png

image.png
返回如下页面,表示您已创建成功,可以查看到创建的弹性公网IP、NAT网关等资源的资源ID。
image.png

5、创建Hologres表

在实例列表页面,但是实例ID。
image.png

在实例详情页面,单击登录实例,进入HoloWeb。
image.png

image.png

在顶部菜单栏中,单击SQL编辑器。

image.png

新建SQL查询
image.png

新建Hologres内部表。

将如下命令复制并粘贴至临时Query查询页签中,单击执行,创建Hologres内部表hologres_dataset_github_event.hologres_github_event,后续会将数据实时写入至该表中。

-- 新建schema用于创建内表并导入数据
CREATE SCHEMA IF NOT EXISTS hologres_dataset_github_event;

DROP TABLE IF EXISTS hologres_dataset_github_event.hologres_github_event;

BEGIN;
CREATE TABLE hologres_dataset_github_event.hologres_github_event (
 id bigint PRIMARY KEY,
 actor_id bigint,
 actor_login text,
 repo_id bigint,
 repo_name text,
 org_id bigint,
 org_login text,
 type text,
 created_at timestamp with time zone NOT NULL,
 action text, 
 commit_id text,
 member_id bigint,
 language text
);
CALL set_table_property ('hologres_dataset_github_event.hologres_github_event', 'distribution_key', 'id');
CALL set_table_property ('hologres_dataset_github_event.hologres_github_event', 'event_time_column', 'created_at');
CALL set_table_property ('hologres_dataset_github_event.hologres_github_event', 'clustering_key', 'created_at');

COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.id IS '事件ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.actor_id IS '事件发起⼈ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.actor_login IS '事件发起⼈登录名';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.repo_id IS 'repoID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.repo_name IS 'repo名称';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.org_id IS 'repo所属组织ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.org_login IS 'repo所属组织名称';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.type IS '事件类型';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.created_at IS '事件发⽣时间';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.action IS '事件行为';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.commit_id IS '提交记录ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.member_id IS '成员ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.language IS '编程语⾔';

COMMIT;

执行结束
image.png

6、实时同步数据至Hologres

在管理中心页面,在下拉框中选择默认⼯作空间,单击进入管理中心。
image.png

在左侧导航栏中,选择数据源 > 数据源列表。

image.png

创建MySQL数据源。

image.png

image.png

配置完成后,在连接配置区域,找到您创建的资源组,单击其右侧的测试连通性。

image.png

image.png
image.png

创建Hologres数据源。

image.png

image.png
image.png

image.png

创建实时同步任务。
image.png

在数据集成页面,在创建同步任务中,选择来源与去向数据源,单击开始创建。

来源:选择MySQL。去向:选择Hologres

image.png

在基本信息区域中,配置任务信息。 新任务名称:data_test。 同步类型:选择整库实时。

image.png

在网络与资源配置区域中,配置任务网络连通。

image.png

image.png

image.png

实时同步任务设置。在选择要同步的库表区域的源端库表中,勾选github_public_event表,然后右移。

image.png
image.png

在目标表映射区域,勾选github_public_event表,单击批量刷新映射。基于上述已创建的Hologres内部表,将目标Schema名改为hologres_dataset_github_event,目标表名改为hologres_github_event,单击完成配置。
image.png

image.png

image.png

在任务列表页面,单击启动。

image.png

image.png
image.png

在任务详情页面,您可查看到任务的执行情况,请耐心等待任务执行完成。

image.png

进度如下:
image.png

image.png

7、实时OLAP分析

返回至SQL编辑器·HoloWeb页签。在临时Query查询页签中,执行如下命令,查询实时更新的过去24小时GitHub最活跃项⽬。


SELECT
  repo_name,
  COUNT(*) AS events
FROM
  hologres_dataset_github_event.hologres_github_event
WHERE
  created_at >= now() - interval '1 day'
GROUP BY
  repo_name
ORDER BY
  events DESC
LIMIT 5;

查看同步的相关监控数据

image.png
image.png
image.png

image.png
image.png
image.png

三、方案总结

在本方案中,DataWorks作为阿里云提供的大数据开发治理平台,产品在多个方面如任务开发便捷性、任务运行速度、产品使用门槛等,通常都能满足企业的数据处理需求,特别是在与Hologres等阿里云自研产品结合使用时,能够发挥出更高的效能。以下是对这些方面的具体分析:

  1. 任务开发便捷性

    • DataWorks提供了丰富的数据开发组件和模板,简化了数据处理的流程。
    • 支持拖拽式的界面操作,降低了数据开发的技术门槛。
    • 集成了多种数据源和数据目标,方便数据的接入和输出。

    因此,从任务开发便捷性的角度来看,DataWorks能够很好地满足企业的需求。

  2. 任务运行速度

    • DataWorks基于阿里云的大数据引擎(如ODPS、EMR等)构建,能够充分利用云端的计算资源。
    • 支持分布式计算和并行处理,提高了数据处理的效率。
    • 与Hologres等高性能数仓产品的结合,能够进一步提升数据查询和分析的速度。

    所以,在任务运行速度方面,DataWorks同样表现出色。

  3. 产品使用门槛

    • DataWorks提供了详尽的文档和教程,帮助用户快速上手。
    • 支持多种身份认证和权限管理方式,确保了数据的安全性和合规性。
    • 提供了丰富的API和SDK,方便用户进行二次开发和集成。

    在产品使用门槛方面,DataWorks也做得相当不错,既适合初学者快速入门,也适合高级用户进行复杂的数据处理。

  4. 其他功能

    • DataWorks还提供了数据质量管理、数据资产管理、数据安全审计等功能,满足了企业对数据治理的全方位需求。
    • 支持实时数据监控和告警,确保数据处理的稳定性和可靠性。

DataWorks与Hologres作为阿里云大数据生态的核心组件,构建了从数据治理到实时价值挖掘的全栈解决方案。二者深度融合后,不仅解决了企业复杂数据架构下的性能瓶颈与协作难题,更通过离在线一体化能力,将数据从采集到决策的价值转化周期缩短至毫秒级,助力政务、金融、零售等千行百业构建实时驱动的智能决策体系,加速产业数字化升级进程。

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
5月前
|
存储 监控 数据挖掘
京东物流基于Flink & StarRocks的湖仓建设实践
本文整理自京东物流高级数据开发工程师梁宝彬在Flink Forward Asia 2024的分享,聚焦实时湖仓的探索与建设、应用实践、问题思考及未来展望。内容涵盖京东物流通过Flink和Paimon等技术构建实时湖仓体系的过程,解决复杂业务场景下的数据分析挑战,如多维OLAP分析、大屏监控等。同时,文章详细介绍了基于StarRocks的湖仓一体方案,优化存储成本并提升查询效率,以及存算分离的应用实践。最后,对未来数据服务的发展方向进行了展望,计划推广长周期数据存储服务和原生数据湖建设,进一步提升数据分析能力。
467 1
京东物流基于Flink & StarRocks的湖仓建设实践
|
24天前
|
SQL 存储 运维
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
本文介绍了 Apache Doris 在菜鸟的大规模落地的实践经验,菜鸟为什么选择 Doris,以及 Doris 如何在菜鸟从 0 开始,一步步的验证、落地,到如今上万核的规模,服务于各个业务线,Doris 已然成为菜鸟 OLAP 数据分析的最优选型。
119 2
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
|
5月前
|
存储 SQL 运维
中国联通网络资源湖仓一体应用实践
本文分享了中国联通技术专家李晓昱在Flink Forward Asia 2024上的演讲,介绍如何借助Flink+Paimon湖仓一体架构解决传统数仓处理百亿级数据的瓶颈。内容涵盖网络资源中心概况、现有挑战、新架构设计及实施效果。新方案实现了数据一致性100%,同步延迟从3小时降至3分钟,存储成本降低50%,为通信行业提供了高效的数据管理范例。未来将深化流式数仓与智能运维融合,推动数字化升级。
210 0
中国联通网络资源湖仓一体应用实践
|
5月前
|
存储 消息中间件 分布式计算
Hologres实时数仓在B站游戏的建设与实践
本文介绍了B站游戏业务中实时数据仓库的构建与优化过程。为满足日益增长的数据实时性需求,采用了Hologres作为核心组件优化传统Lambda架构,实现了存储层面的流批一体化及离线-实时数据的无缝衔接。文章详细描述了架构选型、分层设计(ODS、DWD、DIM、ADS)及关键技术挑战的解决方法,如高QPS点查、数据乱序重写等。目前,该实时数仓已广泛应用于运营分析、广告投放等多个场景,并计划进一步完善实时指标体系、扩展明细层应用及研发数据实时解析能力。
Hologres实时数仓在B站游戏的建设与实践
|
6月前
|
存储 分布式计算 MaxCompute
Hologres实时湖仓能力入门实践
本文由武润雪(栩染)撰写,介绍Hologres 3.0版本作为一体化实时湖仓平台的升级特性。其核心能力包括湖仓存储一体、多模式计算一体、分析服务一体及Data+AI一体,极大提升数据开发效率。文章详细解析了两种湖仓架构:MaxCompute + Hologres实现离线实时一体化,以及Hologres + DLF + OSS构建开放湖仓架构,并深入探讨元数据抽象、权限互通等重点功能,同时提供具体使用说明与Demo演示。
|
2月前
|
SQL DataWorks 关系型数据库
DataWorks+Hologres:打造企业级实时数仓与高效OLAP分析平台
本方案基于阿里云DataWorks与实时数仓Hologres,实现数据库RDS数据实时同步至Hologres,并通过Hologres高性能OLAP分析能力,完成一站式实时数据分析。DataWorks提供全链路数据集成与治理,Hologres支持实时写入与极速查询,二者深度融合构建离在线一体化数仓,助力企业加速数字化升级。
|
6月前
|
SQL 分布式计算 数据挖掘
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
418 63
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
|
5月前
|
存储 消息中间件 Java
抖音集团电商流量实时数仓建设实践
本文基于抖音集团电商数据工程师姚遥在Flink Forward Asia 2024的分享,围绕电商流量数据处理展开。内容涵盖业务挑战、电商流量建模架构、流批一体实践、大流量任务调优及总结展望五个部分。通过数据建模与优化,实现效率、质量、成本和稳定性全面提升,数据质量达99%以上,任务性能提升70%。未来将聚焦自动化、低代码化与成本优化,探索更高效的流批一体化方案。
343 12
抖音集团电商流量实时数仓建设实践
|
6月前
|
存储 安全 数据挖掘
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践
天翼云基于 Apache Doris 成功落地项目已超 20 个,整体集群规模超 50 套,部署节点超 3000 个,存储容量超 15PB
307 2
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践