了解集合通信与模型并行策略

简介: 了解集合通信基础概念及常见的集合通信原语;以及大模型并行策略:包括数据并行、流水并行、张量并行和专家并行。

集合通信

集合通信基础

通过HCCS实现两两互联(Full Mesh),如NPU与NPU之间,CPU与CPU之间;NPU和CPU之间通过PCIE连接。
Full Mesh是指在一个网络拓扑中,每个节点都直接连接到其他节点,形成一个完全互联的网络结构。在Full Mesh网络中,任何两个节点之间都可以直接通信。

2.A+X(16P):

双mesh组网(8P Full-mesh)

集合通信原语

  • 一对多
    Broadcast:将通信域内root节点的数据广播到其他rank

    Scatter:将通信域内root节点的数据均分并散布至其他rank

  • 多对一

  • 多对多



模型并行策略

  • 数据并行(Data Parallelism,DP)

    数据并行是指将一个批次(batch)的训练数据分成若干个小批次,分发给多个计算节点来进行训练的并行方式。

  • 流水并行(Pipeline Parallelism,PP)

    对于分布式训练,当模型规模太大而无法存放在单个计算节点上时,可以使用流水并行。在流水并行中,模型被逐层拆分成几个阶段,每个计算节点仅存储并执行其中的一个阶段(一个阶段可以是一层,也可以是相邻的多层)。这样可以有效减轻每个节点内的存储压力。

  • 张量并行(Tensor Parallelism,TP)

    如果单层/单阶段的模型依然太大而无法放在单个节点上怎么办?那就将它的参数进一步切分到多个节点上,每个节点计算部分结果,再通过通过节点间的通信获取到最终结果,这就是张量并行。简言之,流水并行是模型的层间切割,而张量并行是模型的层内切割。这两种模型并行的方式是可以同时存在的。

  • 专家并行(Experts Parallelism,EP)

    专家并行是在分布式学习中专门针对MoE场景的并行策略,其主要思想就是将不同专家放在不同计算节点上进行并行计算。专家并行与之前所有的并行相比,最大的不同在于,输入数据需要通过一个动态的路由选择机制分发给相应专家,此处会涉及到一个所有节点上的数据重分配的动作,然后在所有专家处理完成后,又需要将分散在不同节点上的数据按原来的次序整合起来。

参考资料

相关文章
|
安全 Linux KVM
倚天产品介绍|倚天虚拟化:CPU虚拟化原理介绍
虚拟化技术中最关键的技术之一就是CPU虚拟化。在没有硬件辅助虚拟化技术出来之前,通常都是通过TCG(软件进行指令翻译)的方式实现CPU虚拟化。但是由于TCG方式的虚拟化层开销太大,性能太差,因此引入了硬件辅助虚拟化技术。
|
算法 Linux 开发者
GitHub Copilot 使用技巧之快捷键大全
GitHub Copilot 使用技巧之快捷键大全
1350 0
|
缓存 安全 SoC
来看看ARM gicv2/gicv3的详解
来看看ARM gicv2/gicv3的详解
1410 0
|
10月前
|
机器学习/深度学习 人工智能 数据可视化
AI开源框架:让分布式系统调试不再"黑盒"
Ray是一个开源分布式计算框架,专为支持可扩展的人工智能(AI)和Python应用程序而设计。它通过提供简单直观的API简化分布式计算,使得开发者能够高效编写并行和分布式应用程序 。Ray广泛应用于深度学习训练、大规模推理服务、强化学习以及AI数据处理等场景,并构建了丰富而成熟的技术生态。
1726 102
AI开源框架:让分布式系统调试不再"黑盒"
|
存储 人工智能 缓存
官宣开源|阿里云与清华大学共建AI大模型推理项目Mooncake
2024年6月,国内优质大模型应用月之暗面Kimi与清华大学MADSys实验室(Machine Learning, AI, Big Data Systems Lab)联合发布了以 KVCache 为中心的大模型推理架构 Mooncake。
|
网络协议
windows_server2012搭建iis并配置http重定向 iis转发
windows_server2012搭建iis并配置http重定向 iis转发
849 1
|
SQL 安全 PHP
PHP安全性实践:防范常见漏洞与攻击####
本文深入探讨了PHP编程中常见的安全漏洞及其防范措施,包括SQL注入、XSS跨站脚本攻击、CSRF跨站请求伪造等。通过实际案例分析,揭示了这些漏洞的危害性,并提供了具体的代码示例和最佳实践建议,帮助开发者提升PHP应用的安全性。 ####
427 6
|
机器学习/深度学习 算法 PyTorch
使用Pytorch中从头实现去噪扩散概率模型(DDPM)
在本文中,我们将构建基础的无条件扩散模型,即去噪扩散概率模型(DDPM)。从探究算法的直观工作原理开始,然后在PyTorch中从头构建它。本文主要关注算法背后的思想和具体实现细节。
9366 3