塔帕若斯国家森林 67 公里塔站 LBA-ECO CD-10 CO2 和 H2O 涡流通量数据

简介: 该数据集记录了2002年1月至2006年1月间,巴西中北部塔帕若斯国家森林(Tapajos National Forest)67公里处原始森林塔点的二氧化碳和水交换涡流通量及气象测量值。数据通过闭路气体分析仪和声波风速计在58米和47米高度采集,包含CO2浓度、水汽通量、风速、温度、辐射等参数,以1小时为间隔平均计算。此外还提供了同地冠层内CO2与水分布及瞬时储量测量结果,支持生态与气候研究。

​LBA-ECO CD-10 CO2 and H2O Eddy Flux Data at km 67 Tower Site, Tapajos National Forest

简介

该数据集包含一个文本文件,报告了帕拉西部(圣塔伦)地区 67 公里处原始森林塔点的二氧化碳和水交换涡流通量测量值以及相关气象测量值。该地点位于巴西中北部的塔帕若斯国家森林内。测量时间跨度为 2002 年 1 月至 2006 年 1 月。

使用塔式闭路 Licor 6262 气体分析仪和 Campbell CSAT3 声波风速计,在两个高度(58 米和 47 米 )测量了二氧化碳和水的涡旋通量(图 1)。涡旋通量测量的采样率为 8 赫兹,并以 1 小时为间隔进行平均。此外,还测量了一系列气象参数(气温、气压、光合有效辐射、净辐射、降水等)。

同地测量包括第三台 Licor 气体分析仪,用于测量 (a) 冠层内及上方 8 个高度的二氧化碳和水浓度分布(每 2 分钟测量 1 个高度);以及 (b) 冠层二氧化碳和水的瞬时总储量, 测量时采用的设计是同时从所有 8 个进气口吸入空气(每 20 分钟一次)。参见相关数据集。

摘要

The flux and meteorological data are reported in one comma separated ASCII text file, km67_eddyflux_2002_2006.txt .

Data File Documentation:

column variable description
1 "hours" Hour of measurement (GMT, continuous from 1/1/00)

2 "JDstart.GMT" Decimal day (GMT, continuous from 1/1/00)
NOTE 1: Tapajos Forest Local time (LT) = GMT - 4 hours
NOTE 2: these times are time at the BEGINNING of the hour-long
data aggregation interval, i.e., data at 12:00 are from
aggregating measurements between 12:00 and 13:00

3 "ws" Sonic wind speed, rotated u (m/sec, @ 57.8 m)

4 "wdir" Wind direction (degrees (0 - 360 degrees))

5 "Tamb" Ambient temp at 58m (level 1 eddy) from chilled mirror sensor (deg C)

6 "Tdew" Ambient dew point temperature @ 58m (deg C)

7 "Tson" Sonic temp (deg C, unadjusted for moisture @ 57.8m)

8 "Tasp" Distance weighted aspirated ambient temperature from thermistors (deg C)

9 "fheat" Heat flux (deg C m/sec)

10 "fmom" Momentum flux (m2/sec2)

11 "co2" CO2 concentration (mmol/mol)

12 "fco2" Eddy flux of CO2, (umol/m2/sec) [relative to dry air]

13 "h2o.mmol.m" H2O concentration (mmol/mol)

14 "fh2o" Eddy flux of H2O (mmol/m2/sec) [relative to dry air]

15 "h2o.mix" Mixing ratio (g H2O/kg (dry) air)

16 "Pamb.Pa" Ambient pressure (Pascals)

17 "H" Sensible heat flux (W/m2)

18 "LHdry" Latent heat flux (W/m2) [relative to dry air]

19 "ustar" Friction velocity, sqrt(-) (m/sec),
where w,u are the rotated wind components

20 "ppm2umol" Density conversion factor for fluxes (mol/m3) [relative to dry air]

21 "compiler" Which fortran compiler was used in processing [IDs ed1 vs. ed2]

22 "NetRad" Net Radiation @ 64.1 m (W/m2, corrected)

23 "sNetRad" Std deviation on hourly mean of NetRad

24 "par" PAR (umol/m2/sec) level 1 (63.6 m)

25 "sPAR1up" Std deviation on hourly mean of par

26 "PAR2up" PAR (umol/m2/sec) level 2 (15.09 m)

27 "sPAR2up" Std deviation on hourly mean of PAR2up

28 "PAR1dn" Downward PAR (umol/m2/sec) level 1 (63.6 m)

29 "sPAR1dn" Std deviation on hourly mean of PAR1dn

30 "Tair1" Temp (via thermistor) at profile level 1 (61.94 m) (deg C)

31 "Tair2" Temp (via thermistor) at profile level 2 (49.75 m) (deg C)

32 "WS1" Wind speed, Cup anemometer #1 (m/sec, 64.1 m)

33 "sWS1" Std deviation on hourly mean of WS1

34 "rain" Precipitation (mm in each hour) (tipping bucket @ 42.6m)

35 "co2col.wt" Mean column CO2 concentration (ppm)

36 "storage.wt" Storage flux (umol/m2/sec) below this level = d/dt (CO2 column avg)
based on a discrete integral approach using the profile concentration
measurements

37 "nee.wt" NEE (umol/m2/sec) = fco2 + storage.wt

38 "T.filled" Filled temperature for level 1 (filled Tasp). Filled based on adjusted
temperature measurements from the Jamaraqua met. station
(-2.80639, -55.03639). Data courtesy of D. Fitzjarrald (SUNY Albany)

39 "GMT" GMT time of day

40 "yr" Year

41 "NEE" Integrated NEE (umol/m2/sec) [filtered and integrated across gaps],
see status for filling information [u*>0.22]

42 "R" Respiration based on nighttime NEE with u*>0.22 m/s (umol/m2/sec)
see status for filling information

43 "GEE" Gross Ecosystem Exchange (umol/m2/sec)
see status for filling information

44 "R.light" Respiration based on light-curve interpolation to 0 PAR (umol/m2/sec)

45 "stg.filled" Filled storage (umol/m2/sec). This storage estimate has also been balanced
to 0 on 5 day intervals.

46 "par.filled" Filled PAR timeseries (umol/m2/sec) see par.status for filling codes

47 "par.status" Status 0 = unfilled data, measured with Wofsy sensor
Status 1 = filled based on relation between Wofsy PAR sensor & Wofsy NetRad
sensor over 10 day intervals
Status 2 = filled based on relation between D. Fitzjarrald PAR sensor &
Wofsy NetRad sensor over 10 day intervals
Status 3 = filled based on lookup table for a composite year, based on
entire time series.

48 "NetRad.filled" Filled NetRad timeseries (W/m2), see NetRad.status for filling codes

49 "NetRad.status" Status 0 = unfilled data, measured with Wofsy sensor
Status 1 = filled based on relation between Wofsy PAR sensor & Wofsy NetRad
sensor over 10 day intervals
Status 2 = filled based on relation between D. Fitzjarrald PAR sensor &
Wofsy NetRad sensor over 10 day intervals
Status 3 = filled based on lookup table for a composite year, based on
entire time series.

50 "hr.2" Hour of the day (GMT)

51 "Status" 6-bit status word to describe what, if any, filling technique was used
on the NEE, R, and GEE data

bit value description
0 1 u < 0.22 or u = NA; NEE = R + GEE
1 2 no PAR; PAR filled from lookup table for GEE calculation
2 4 no Tair available; filled in from Jamaraqua for R calculation
3 8 No measured NEE available; filled in with R+GEE
4 16 R calculated, not measured (daytime & calm nights)
5 32 Storage gap of >= 5 days; filled w/mean storage value

 Missing value code is "NA"
 Values are comma separated

Sample Data Records:

All of the flux and meteorological data are reported in km67_eddyflux_2002_2006.txt.

hours,JDstart.GMT.,ws,wdir,Tamb,Tdew,Tson,Tasp,fheat,fmom,co2,fco2,h2o.mmol.m.,fh2o,
h2o.mix,Pamb.Pa,H, LHdry,ustar,ppm2umol,compiler,NetRad,sNetRad,par,sPAR1up,PAR2up,sPAR2up,PAR1dn,
sPAR1dn,Tair1,Tair2, WS1,sWS1,rain,co2col.wt,storage.wt,nee.wt,T.filled,GMT,yr,NEE,R,
GEE, R.light,stg.filled,par.filled,par.status,NetRad.filled,NetRad.status,hr.2,Status

17610,733.75,1.95,179.804,29.183,23.13,32.475,29.079,0.043,-0.227,394.86,NA,30.834,4.402,
19.188,97867.5,47.953, 192.815,0.43,37.743,11,NA,0.128,541.576,36.264,138.926,13.245,24.118,
1.604,29.161,28.92, 2.799,0.94,0,373.085,0.539,NA,29.079,2.75,2002,-7.251,9.231,
-16.482, NA,0.437,541.576,0,239.15,3,18,24

17611,733.792,2.226,274.378,27.888,24.574,31.531,27.906,0.052,-0.197,377.74,-6.896,32.106,1.562,
19.98,97929.8,57.2, 68.492,0.41,37.805,11,NA,0.244,570.412,68.772,102.103,14.096,24.946,
2.716,27.978,27.768, 2.138,0.772,0,373.88,0.587,-6.309,27.906,2.792,2002,-6.411,9.231,
-15.642, NA,0.485,570.412,0,190.283,3,19,16

17612,733.833,1.856,275.332,28.21,24.312,31.909,28.337,0.022,-0.114,376.175,-3.952,31.252,1.011,
19.449,97965.3,24.009, 44.332,0.337,37.804,11,NA,0.13,337.28,38.094,67.313,6.905,15.59,
1.868,28.402,28.212, 1.746,0.684,0,374.584,0.518,-3.434,28.337,2.833,2002,-3.536,9.231,
-12.767, NA,0.416,337.28,0,59.45,3,20,16

...

**Line Breaks Added to Improve Readability

Site boundaries: (All latitude and longitude given in degrees and fractions)

Site (Region) Westernmost Longitude Easternmost Longitude Northernmost Latitude Southernmost Latitude Geodetic Datum
Para Western (Santarem) - km 67 Primary Forest Tower Site (Para Western (Santarem)) -54.959 -54.959 -2.857 -2.857 World Geodetic System, 1984 (WGS-84)

代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify

import pandas as pd
import leafmap

url = "https://github.com/opengeos/NASA-Earth-Data"
df = pd.read_csv(url, sep="\t")
df

leafmap.nasa_data_login()

results, gdf = leafmap.nasa_data_search(
short_name="CD10_EddyFlux_Tapajos_860",
cloud_hosted=True,
bounding_box=(-55.21, -4.05, -54.91, -2.84),
temporal=("2002-01-01", "2006-01-18"),
count=-1, # use -1 to return all datasets
return_gdf=True,
)

gdf.explore()

leafmap.nasa_data_download(results[:5], out_dir="data")

相关文章
|
4月前
|
人工智能 计算机视觉
HarmonyOS NEXT AI基础视觉服务-背景替换
这是一个基于AI基础视觉服务的背景替换案例,通过调用设备相册选择图片并智能分割主体,支持动态更换背景颜色。主要步骤包括:1) 导入模块与定义组件;2) 实现图片选择与格式转换;3) 使用`subjectSegmentation.doSegmentation`接口完成主体分割;4) 通过随机RGB值实现背景色动态更换。代码结构清晰,功能完整,适合学习AI图像处理技术。
HarmonyOS NEXT AI基础视觉服务-背景替换
|
Cloud Native Serverless 容器
袋鼠:云原生底层系统探索和实践
随着云计算的发展,云原生概念已经开始成为一种被广泛接受的开发理念。本文将概述我们面向云原生场景在底层技术方面做的探索以及实践。文章根据云栖大会系统软件专场内容整理,演讲者:韩伟东
4211 1
|
4月前
|
存储 人工智能 缓存
AI变革药物研发:深势科技的云原生实践之路
阿里云助力深势科技推出创新的玻尔Bohrium®科研云平台和Hermite®药物计算设计平台,并持续完善。这两项先进的工业设计与仿真基础设施成果通过AI技术赋能科学研究和工业研发,不仅大幅缩短了药物研发周期,降低了成本,还显著提高了研发成功率,为生物医药行业带来了前所未有的变革,这是AI for Science领域的重大突破。
302 38
|
4月前
|
监控 负载均衡 安全
静态IP代理与动态IP代理:提升速度与保障隐私的技术解析
本文探讨了静态IP代理和动态IP代理的特性和应用场景。静态IP代理通过高质量服务提供商、网络设置优化、定期更换IP与负载均衡及性能监控提升网络访问速度;动态IP代理则通过隐藏真实IP、增强安全性、绕过封锁和提供独立IP保障用户隐私。结合实际案例与代码示例,展示了两者在不同场景下的优势,帮助用户根据需求选择合适的代理服务以实现高效、安全的网络访问。
153 1
|
7月前
|
机器学习/深度学习 存储 自然语言处理
RWKV-7:极先进的大模型架构,长文本能力极强
RWKV-7 是极先进的最新大模型架构,超越 attention / linear attention 范式,拥有强大的 in-context-learning(上下文学习)能力,可真正持续学习,在保持 100% RNN 的同时,拥有极强的长文本能力。
302 2
RWKV-7:极先进的大模型架构,长文本能力极强
|
7月前
|
数据采集 监控 数据管理
AllData数据中台商业版-核心内参资料分享
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
9月前
|
人工智能 自然语言处理 文字识别
部署《文档智能 & RAG》解决方案
部署《文档智能 & RAG》解决方案
215 4
|
10月前
|
人工智能 安全 大数据
新一代信息通信技术
新一代信息通信技术
746 5
|
11月前
|
数据可视化 IDE 数据挖掘
揭秘Conda:Python开发者必备的包管理神器
揭秘Conda:Python开发者必备的包管理神器
172 1
|
开发框架 Java 程序员
什么是层次式体系结构?
层次式体系结构设计是将系统组成一个层次结构,每一层为上层服务,并作为下层客户。在一些层次系统中,除了一些精心挑选的输出函数外,内部的层接口只对相邻的层可见。
230 1