基于YOLOv8的河道垃圾塑料瓶子识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

简介: 本项目基于YOLOv8与PyQt5,打造了一套完整的河道垃圾(塑料瓶)智能识别系统。支持图片、视频、摄像头等多种输入方式,提供开箱即用的检测功能和详细训练教程。包含2万张标注数据集、预训练权重及图形化界面,适合AI环保课题开发、工程实践或毕设选题。运行`main.py`即可快速启动,助力智能化水体管理与可持续发展!

基于YOLOv8的河道垃圾塑料瓶子识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

源码包含:完整YOLOv8训练代码+数据集(带标注)+权重文件+直接可允许检测的yolo检测程序+直接部署教程/训练教程

基本功能演示

哔哩哔哩:https://www.bilibili.com/video/BV1unTXzNESm

项目摘要

本项目集成了 YOLOv8 垃圾检测模型PyQt5 图形界面工具,实现了包括图片、文件夹、视频与摄像头等多种输入方式的 河道塑料瓶检测功能。配套完整源码与训练流程说明,让你开箱即用,快速部署属于你自己的环境检测系统,源码已打包上传。

源码打包在文末。

前言

🧠 关键词:YOLOv8、目标检测、PyQt5、河道垃圾识别、塑料瓶、部署实战、AI环保

本项目提供了一个完整的河道垃圾(塑料瓶)智能识别系统,基于先进的 YOLOv8 检测框架,结合 PyQt5 图形界面,支持图片、视频、摄像头多种输入方式,适合 AI 环保类课题开发、工程实践、毕设选题等场景。

✅ 包含内容:

  • ✅ 完整 YOLOv8 训练与推理代码
  • ✅ 已标注的数据集(2 万张图片,塑料瓶目标)
  • ✅ 训练好的模型权重(.pt)
  • ✅ 基于 PyQt5 的图形用户界面
  • ✅ 支持摄像头实时识别
  • ✅ 附带详细训练教程、部署手册

一、软件核心功能介绍及效果演示

功能名称 支持状态 说明
图片识别 支持选择本地单张图片进行检测
批量检测 支持选择整个文件夹自动批量检测
视频识别 支持加载视频文件进行识别
摄像头实时识别 支持 USB 摄像头实时检测并标注目标
PyQt5 图形界面 所有功能封装进可视化窗口
模型训练模块 从头开始训练或微调支持
权重加载 支持加载已训练 .pt 权重文件

二、软件效果演示

为了直观展示本系统基于 YOLOv8 模型的检测能力,我们设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。

(1)单图片检测演示

用户点击“选择图片”,即可加载本地图像并执行检测:

image-20250608182934578


(2)多文件夹图片检测演示

用户可选择包含多张图像的文件夹,系统会批量检测并生成结果图。

image-20250608182949733


(3)视频检测演示

支持上传视频文件,系统会逐帧处理并生成目标检测结果,可选保存输出视频:

image-20250608183026244


(4)摄像头检测演示

实时检测是系统中的核心应用之一,系统可直接调用摄像头进行检测。由于原理和视频检测相同,就不重复演示了。

image-20250608183039140


(5)保存图片与视频检测结果

用户可通过按钮勾选是否保存检测结果,所有检测图像自动加框标注并保存至指定文件夹,支持后续数据分析与复审。

image-20250608183055699

三、模型的训练、评估与推理

YOLOv8是Ultralytics公司发布的新一代目标检测模型,采用更轻量的架构、更先进的损失函数(如CIoU、TaskAlignedAssigner)与Anchor-Free策略,在COCO等数据集上表现优异。
其核心优势如下:

  • 高速推理,适合实时检测任务
  • 支持Anchor-Free检测
  • 支持可扩展的Backbone和Neck结构
  • 原生支持ONNX导出与部署

3.1 YOLOv8的基本原理

YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:

  • 速度快:推理速度提升明显;
  • 准确率高:支持 Anchor-Free 架构;
  • 支持分类/检测/分割/姿态多任务
  • 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。

YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。

image-20250526165954475

YOLOv8原理图如下:

image-20250526170118103

3.2 数据集准备与训练

采用 YOLO 格式的数据集结构如下:

dataset/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

每张图像有对应的 .txt 文件,内容格式为:

4 0.5096721233576642 0.352838390077821 0.3947600423357664 0.31825755058365757

分类包括(可自定义):

nc: 1
names: ['bottle']

image-20250608182526059

3.3. 训练结果评估

训练完成后,将在 runs/detect/train 目录生成结果文件,包括:

  • results.png:损失曲线和 mAP 曲线;
  • weights/best.pt:最佳模型权重;
  • confusion_matrix.png:混淆矩阵分析图。

若 mAP@0.5 达到 90% 以上,即可用于部署。

在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:

image-20250608182544317

3.4检测结果识别

使用 PyTorch 推理接口加载模型:

import cv2
from ultralytics import YOLO
import torch
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel

# 加入可信模型结构
safe_globals().add(DetectionModel)

# 加载模型并推理
model = YOLO('runs/detect/train/weights/best.pt')
results = model('test.jpg', save=True, conf=0.25)

# 获取保存后的图像路径
# 默认保存到 runs/detect/predict/ 目录
save_path = results[0].save_dir / results[0].path.name

# 使用 OpenCV 加载并显示图像
img = cv2.imread(str(save_path))
cv2.imshow('Detection Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

预测结果包含类别、置信度、边框坐标等信息。

result_0206

四.YOLOV8+YOLOUI完整源码打包

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见【4.2 完整源码下载】:

4.1 项目开箱即用

作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。

运行项目只需输入下面命令。

python main.py

读者也可自行配置训练集,或使用打包好的数据集直接训练。

自行训练项目只需输入下面命令。

yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001

4.2 完整源码下载

计算机视觉YOLO项目源码:ComputerVisionProject

💾 Gitee项目地址:https://gitee.com/goodnsxxc/yolo-main

包含:

📦完整项目源码

📦 预训练模型权重

🗂️ 数据集地址(含标注脚本)

总结 ✅

本项目从实战角度出发,提供了一个基于 YOLOv8 的完整河道垃圾(塑料瓶)检测系统,涵盖了从数据标注、模型训练、结果评估到 PyQt5 可视化界面集成与多种输入形式(图片、视频、摄像头)支持的全流程。其特点在于:

  • 🎯 一站式开箱即用:无需繁琐配置,运行 main.py 即可开始检测;
  • 📊 提供完整训练教程和评估指标,方便定制优化;
  • 🧠 结合 PyQt5 可视化,适合项目演示、课程实验和工程部署;
  • 🌱 面向环保领域,响应智能化水体管理与可持续发展趋势。

无论你是学生、科研人员,还是工程开发者,该项目都可以作为一个优秀的**目标检测实战,助力你在 AI+环保领域落地更多创意应用!

相关文章
【yolo训练数据集】标注好的垃圾分类数据集共享
【yolo训练数据集】标注好的垃圾分类数据集共享
4514 256
【yolo训练数据集】标注好的垃圾分类数据集共享
|
机器学习/深度学习 人工智能 安全
基于YOLOv8的路面缺陷(路面裂缝、井盖、坑洼路面)识别项目【完整源码数据集+PyQt5界面+完整训练流程+开箱即用!】
本项目基于YOLOv8与PyQt5,打造路面缺陷检测系统,支持裂缝、井盖、坑洼识别,涵盖图片、视频、摄像头等多种输入方式。提供完整训练数据、预训练模型及图形化界面,开箱即用,本地运行,方便二次开发。适用于智慧城市建设与道路安全巡检,推动AI检测技术实际应用。项目包含源码、数据集、训练代码,支持科研学习与工程实战。
|
4月前
|
机器学习/深度学习 监控 自动驾驶
基于YOLOv8的交通标识及设施识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8与PyQt5,打造交通标识及设施智能识别系统。支持图像、视频、摄像头输入,可检测人行横道、限速标志、停车标志和交通信号灯。提供完整源码、数据集、权重文件与训练教程,开箱即用,适合多场景应用。系统具备高精度、实时性强、部署便捷等优势,助力智能交通与自动驾驶发展。
基于YOLOv8的交通标识及设施识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
机器学习/深度学习 监控 数据可视化
基于YOLOv8的人脸表情识别项目【完整源码数据集+PyQt5界面+完整训练流程+开箱即用】
本项目基于YOLOv8开发人脸表情识别系统,集成PyQt5图形界面,支持图片、文件夹、视频及摄像头等多种输入方式的表情检测。具备开箱即用的特性,包含完整源码、预训练模型权重与数据集,适合毕业设计、科研及行业应用。功能涵盖单张/批量图片检测、视频实时分析、摄像头流处理等,并可保存结果。项目附带详细训练与部署流程,助力快速构建情绪识别系统。
|
安全 C# 图形学
Unity 之命名规范(一)
一个优良的架构,个人认为不仅仅体现在设计的思想结构上,代码的命名规范也是至关重要的,一段的优雅的代码会让人看着赏心悦目,一个结构混乱,命名随意的代码会让人狂抓,尤其是在项目交接的时候,如果项目属于后者,那我只能说祝你好运了~ 微软的C#是结合众多开发者心血的结晶,但是C# 的命名看上去貌似就是一个人写的,每一行代码都遵循相同的准则。
2126 0
|
监控 算法 自动驾驶
基于YOLOv8的7种交通场景识别项目【完整源码数据集+PyQt5界面+完整训练流程+开箱即用】
本项目基于YOLOv8算法,打造了一个支持7类交通场景识别的智能系统,包括机动车、非机动车、行人及各类信号灯状态。采用PyQt5开发图形界面,提供单图、批量图片、视频文件和摄像头实时流等多种输入方式,并支持检测结果保存与模型自定义训练。项目包含完整源码、数据集及预训练权重,开箱即用,适合智能驾驶、城市监控等领域。通过简洁友好的UI,用户无需代码基础即可体验高性能目标检测功能,同时支持二次开发与工程部署。
|
8月前
|
人工智能 自然语言处理 搜索推荐
云上玩转DeepSeek系列之三:PAI-RAG集成联网搜索,构建企业级智能助手
本文将为您带来“基于 PAI-RAG 构建 DeepSeek 联网搜索+企业级知识库助手服务”解决方案,PAI-RAG 提供全面的生态能力,支持一键部署至企业微信、微信公众号、钉钉群聊机器人等,助力打造多场景的AI助理,全面提升业务效率与用户体验。
|
12月前
|
机器学习/深度学习 人工智能 自然语言处理
🔍 Prompt、RAG、Fine-tuning三者各自的优势是什么?
【10月更文挑战第15天】在人工智能模型的开发中,Prompt、RAG(检索增强生成)和Fine-tuning是三种常见的优化技术。Prompt通过少量示例引导模型生成特定输出,简单灵活;RAG结合检索和生成,适合需要大量外部知识的场景,提高答案准确性和可解释性;Fine-tuning通过特定任务或数据集训练模型,提升特定场景下的表现,适用于有大量数据和计算资源的场景。开发者需根据具体需求选择最合适的优化策略。
584 4
|
计算机视觉
YOLOv5改进 | 2023检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形)
YOLOv5改进 | 2023检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形)
492 0
|
11月前
|
移动开发
USB-TTL连接ESP8266不识别串口/串口助手回复乱码
【11月更文挑战第14天】当USB-TTL连接ESP8266出现不识别串口或乱码问题时,应检查硬件连接(线路、电源)、串口设置(驱动、串口选择、数据位等)及软件固件(AT指令、固件版本、串口助手)。确保所有设置正确无误。
1207 0