24. 两两交换链表中的节点, 19.删除链表的倒数第N个节点 ,面试题 02.07. 链表相交

简介: 1. **两两交换链表中的节点**:通过引入虚拟头结点,使所有节点都能采用统一的交换逻辑,避免对头结点单独处理。2. **删除链表的倒数第N个节点**:利用双指针技巧,让快慢指针保持N个节点的距离,当快指针到达末尾时,慢指针正好指向待删除节点的前一个节点。3. **链表相交**:先计算两链表长度并调整起点,确保从相同距离末尾的位置开始遍历,从而高效找到相交节点或确定无交点。以上方法均在时间复杂度和空间复杂度上进行了优化,适合用于理解和掌握链表的基本操作及常见算法设计思路。

题目:24. 两两交换链表中的节点

Leetcode原题:24. 两两交换链表中的节点

给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题(即,只能进行节点交换)。

示例 1:

输入:head = [1,2,3,4]

输出:[2,1,4,3]

示例 2:

输入:head = []

输出:[]

示例 3:

输入:head = [1]

输出:[1]

提示:

链表中节点的数目在范围 [0, 100] 内

0 <= Node.val <= 100

思考历程与知识点:  

因为头结点没有前一个节点

所以为了让所有节点都能采用同一种调换方式,选择用虚拟头结点的写法。

虚拟头结点可以理解为头结点的一个替身。

原来是头结点为老大,后面一群小弟,前面没东西。

现在新立一个替身,

让替身指向头结点后,头结点再指向后面的小弟们。

这样,现在的老大就是那个替身,

而真正的头结点和其他小弟一样,都跟在后面,

这样就可以用同一种方法进行调换了。

题解:
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* swapPairs(ListNode* head) {
        ListNode* dummyhead = new ListNode(0);
        dummyhead -> next = head;
        ListNode* cur = dummyhead;
        while(cur -> next != nullptr && cur -> next -> next != nullptr) {
            ListNode* tmp = cur -> next;
            ListNode* tmp2 = cur -> next -> next -> next ;
 
            cur -> next = cur ->next ->next;
            cur -> next ->next  = tmp;
            cur -> next ->next ->next = tmp2;
            cur = cur ->next ->next;
 
        }  
        return dummyhead -> next;
    }
};

其他语言版本:

java:
class Solution {
  public ListNode swapPairs(ListNode head) {
        ListNode dumyhead = new ListNode(-1); // 设置一个虚拟头结点
        dumyhead.next = head; // 将虚拟头结点指向head,这样方面后面做删除操作
        ListNode cur = dumyhead;
        ListNode temp; // 临时节点,保存两个节点后面的节点
        ListNode firstnode; // 临时节点,保存两个节点之中的第一个节点
        ListNode secondnode; // 临时节点,保存两个节点之中的第二个节点
        while (cur.next != null && cur.next.next != null) {
            temp = cur.next.next.next;
            firstnode = cur.next;
            secondnode = cur.next.next;
            cur.next = secondnode;       // 步骤一
            secondnode.next = firstnode; // 步骤二
            firstnode.next = temp;      // 步骤三
            cur = firstnode; // cur移动,准备下一轮交换
        }
        return dumyhead.next;  
    }
}
 python:
# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, val=0, next=None):
#         self.val = val
#         self.next = next
 
class Solution:
    def swapPairs(self, head: ListNode) -> ListNode:
        dummy_head = ListNode(next=head)
        current = dummy_head
       
        # 必须有cur的下一个和下下个才能交换,否则说明已经交换结束了
        while current.next and current.next.next:
            temp = current.next # 防止节点修改
            temp1 = current.next.next.next
           
            current.next = current.next.next
            current.next.next = temp
            temp.next = temp1
            current = current.next.next
        return dummy_head.next

题目: 19.删除链表的倒数第N个节点  

Leetcode原题:19. 删除链表的倒数第 N 个结点

给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。

示例 1:

输入:head = [1,2,3,4,5], n = 2

输出:[1,2,3,5]

示例 2:

输入:head = [1], n = 1

输出:[]

示例 3:

输入:head = [1,2], n = 1

输出:[1]

提示:

链表中结点的数目为 sz

1 <= sz <= 30

0 <= Node.val <= 100

1 <= n <= sz


思考历程与知识点:  

删除倒数第n个节点。

因为链表像一串小火车,你只知道火车头的位置。

要想知道全长,你只能从火车头一节一节车厢往后找。

当你到达需要删除的车厢时,你并不知道你已经到了,因为只有知道全长才能知道倒数第n个是哪一个,

找完全部后才知道一共有多少个车厢。

所以要想删掉倒数第n个,并且只需要遍历一次的情况下,

需要想办法知道什么时候已经到达需要删除的车厢了。

双指针:设置两个指针,中间隔着n个距离,当第二个指针到达最后一个节点时,第一个指针就是倒数第n个的距离,很简单的。

题解:

class Solution {
public:
    ListNode* removeNthFromEnd(ListNode* head, int n) {
        ListNode* dummyHead = new ListNode(0);
        dummyHead->next = head;
        ListNode* slow = dummyHead;
        ListNode* fast = dummyHead;
        while(n-- && fast != NULL) {
            fast = fast->next;
        }
        fast = fast->next; // fast再提前走一步,因为需要让slow指向删除节点的上一个节点
        while (fast != NULL) {
            fast = fast->next;
            slow = slow->next;
        }
        slow->next = slow->next->next;  
       
        // ListNode *tmp = slow->next;  C++释放内存的逻辑
        // slow->next = tmp->next;
        // delete nth;
       
        return dummyHead->next;
    }
};

其他语言版本:

java:
public ListNode removeNthFromEnd(ListNode head, int n){
    ListNode dummyNode = new ListNode(0);
    dummyNode.next = head;
 
    ListNode fastIndex = dummyNode;
    ListNode slowIndex = dummyNode;
 
    //只要快慢指针相差 n 个结点即可
    for (int i = 0; i < n  ; i++){
        fastIndex = fastIndex.next;
    }
 
    while (fastIndex.next != null){
        fastIndex = fastIndex.next;
        slowIndex = slowIndex.next;
    }
 
    //此时 slowIndex 的位置就是待删除元素的前一个位置。
    //具体情况可自己画一个链表长度为 3 的图来模拟代码来理解
    slowIndex.next = slowIndex.next.next;
    return dummyNode.next;
}
python:
# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, val=0, next=None):
#         self.val = val
#         self.next = next
 
class Solution:
    def removeNthFromEnd(self, head: ListNode, n: int) -> ListNode:
        # 创建一个虚拟节点,并将其下一个指针设置为链表的头部
        dummy_head = ListNode(0, head)
       
        # 创建两个指针,慢指针和快指针,并将它们初始化为虚拟节点
        slow = fast = dummy_head
       
        # 快指针比慢指针快 n+1 步
        for i in range(n+1):
            fast = fast.next
       
        # 移动两个指针,直到快速指针到达链表的末尾
        while fast:
            slow = slow.next
            fast = fast.next
       
        # 通过更新第 (n-1) 个节点的 next 指针删除第 n 个节点
        slow.next = slow.next.next
       
        return dummy_head.next

题目: 面试题 02.07. 链表相交

Leetcode原题:面试题 02.07. 链表相交

给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null 。

图示两个链表在节点 c1 开始相交:

题目数据 保证 整个链式结构中不存在环。

注意,函数返回结果后,链表必须 保持其原始结构 。

示例 1:

输入:intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = 2, skipB = 3

输出:Intersected at '8'

解释:相交节点的值为 8 (注意,如果两个链表相交则不能为 0)。

从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,0,1,8,4,5]。

在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。

示例 2:

输入:intersectVal = 2, listA = [0,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1

输出:Intersected at '2'

解释:相交节点的值为 2 (注意,如果两个链表相交则不能为 0)。

从各自的表头开始算起,链表 A 为 [0,9,1,2,4],链表 B 为 [3,2,4]。

在 A 中,相交节点前有 3 个节点;在 B 中,相交节点前有 1 个节点。

示例 3:

输入:intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2

输出:null

解释:从各自的表头开始算起,链表 A 为 [2,6,4],链表 B 为 [1,5]。

由于这两个链表不相交,所以 intersectVal 必须为 0,而 skipA 和 skipB 可以是任意值。

这两个链表不相交,因此返回 null 。

提示:

listA 中节点数目为 m

listB 中节点数目为 n

0 <= m, n <= 3 * 104

1 <= Node.val <= 105

0 <= skipA <= m

0 <= skipB <= n

如果 listA 和 listB 没有交点,intersectVal 为 0

如果 listA 和 listB 有交点,intersectVal == listA[skipA + 1] == listB[skipB + 1]

思考历程与知识点:  

如果一个节点一个节点找,那就是上面的线路挨个节点选一遍,

假设它是交点,然后每个都要在下面从头到尾找一圈,那复杂度就是O(N*N),实在是太大了。

所以换个思路,

既然最后会汇合成一条线路,那就说明,两个链表最后几个肯定一样呀。

所以只要从后往前找,一直到两边不同的时候,就是分叉点了。

题解:

class Solution {
public:
    ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
        ListNode* curA = headA;
        ListNode* curB = headB;
        int lenA = 0, lenB = 0;
        while (curA != NULL) { // 求链表A的长度
            lenA++;
            curA = curA->next;
        }
        while (curB != NULL) { // 求链表B的长度
            lenB++;
            curB = curB->next;
        }
        curA = headA;
        curB = headB;
        // 让curA为最长链表的头,lenA为其长度
        if (lenB > lenA) {
            swap (lenA, lenB);
            swap (curA, curB);
        }
        // 求长度差
        int gap = lenA - lenB;
        // 让curA和curB在同一起点上(末尾位置对齐)
        while (gap--) {
            curA = curA->next;
        }
        // 遍历curA 和 curB,遇到相同则直接返回
        while (curA != NULL) {
            if (curA == curB) {
                return curA;
            }
            curA = curA->next;
            curB = curB->next;
        }
        return NULL;
    }
};

其他语言版本:

java:
public class Solution {
    public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
        ListNode curA = headA;
        ListNode curB = headB;
        int lenA = 0, lenB = 0;
        while (curA != null) { // 求链表A的长度
            lenA++;
            curA = curA.next;
        }
        while (curB != null) { // 求链表B的长度
            lenB++;
            curB = curB.next;
        }
        curA = headA;
        curB = headB;
        // 让curA为最长链表的头,lenA为其长度
        if (lenB > lenA) {
            //1. swap (lenA, lenB);
            int tmpLen = lenA;
            lenA = lenB;
            lenB = tmpLen;
            //2. swap (curA, curB);
            ListNode tmpNode = curA;
            curA = curB;
            curB = tmpNode;
        }
        // 求长度差
        int gap = lenA - lenB;
        // 让curA和curB在同一起点上(末尾位置对齐)
        while (gap-- > 0) {
            curA = curA.next;
        }
        // 遍历curA 和 curB,遇到相同则直接返回
        while (curA != null) {
            if (curA == curB) {
                return curA;
            }
            curA = curA.next;
            curB = curB.next;
        }
        return null;
    }
 
}
 python:
class Solution:
    def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode:
        lenA, lenB = 0, 0
        cur = headA
        while cur:         # 求链表A的长度
            cur = cur.next  
            lenA += 1
        cur = headB  
        while cur:         # 求链表B的长度
            cur = cur.next  
            lenB += 1
        curA, curB = headA, headB
        if lenA > lenB:     # 让curB为最长链表的头,lenB为其长度
            curA, curB = curB, curA
            lenA, lenB = lenB, lenA  
        for _ in range(lenB - lenA):  # 让curA和curB在同一起点上(末尾位置对齐)
            curB = curB.next  
        while curA:         #  遍历curA 和 curB,遇到相同则直接返回
            if curA == curB:
                return curA
            else:
                curA = curA.next  
                curB = curB.next
        return None


                       

相关文章
|
9月前
|
算法
❤️算法笔记❤️-(每日一刷-160、相交链表)
❤️算法笔记❤️-(每日一刷-160、相交链表)
70 1
|
9月前
LeetCode第二十四题(两两交换链表中的节点)
这篇文章介绍了LeetCode第24题的解法,即如何通过使用三个指针(preNode, curNode, curNextNode)来两两交换链表中的节点,并提供了详细的代码实现。
95 0
LeetCode第二十四题(两两交换链表中的节点)
|
9月前
(剑指offer)18、删除链表的节点—22、链表中倒数第K个节点—25、合并两个排序的链表—52、两个链表的第一个公共节点(2021.12.07)
(剑指offer)18、删除链表的节点—22、链表中倒数第K个节点—25、合并两个排序的链表—52、两个链表的第一个公共节点(2021.12.07)
108 0
|
11月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
8月前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
8月前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
|
8月前
|
存储 缓存 Java
大厂面试必看!Java基本数据类型和包装类的那些坑
本文介绍了Java中的基本数据类型和包装类,包括整数类型、浮点数类型、字符类型和布尔类型。详细讲解了每种类型的特性和应用场景,并探讨了包装类的引入原因、装箱与拆箱机制以及缓存机制。最后总结了面试中常见的相关考点,帮助读者更好地理解和应对面试中的问题。
194 4
|
9月前
|
算法 Java 数据中心
探讨面试常见问题雪花算法、时钟回拨问题,java中优雅的实现方式
【10月更文挑战第2天】在大数据量系统中,分布式ID生成是一个关键问题。为了保证在分布式环境下生成的ID唯一、有序且高效,业界提出了多种解决方案,其中雪花算法(Snowflake Algorithm)是一种广泛应用的分布式ID生成算法。本文将详细介绍雪花算法的原理、实现及其处理时钟回拨问题的方法,并提供Java代码示例。
470 2
|
9月前
|
JSON 安全 前端开发
第二次面试总结 - 宏汉科技 - Java后端开发
本文是作者对宏汉科技Java后端开发岗位的第二次面试总结,面试结果不理想,主要原因是Java基础知识掌握不牢固,文章详细列出了面试中被问到的技术问题及答案,包括字符串相关函数、抽象类与接口的区别、Java创建线程池的方式、回调函数、函数式接口、反射以及Java中的集合等。
110 0
|
11月前
|
XML 存储 JSON
【IO面试题 六】、 除了Java自带的序列化之外,你还了解哪些序列化工具?
除了Java自带的序列化,常见的序列化工具还包括JSON(如jackson、gson、fastjson)、Protobuf、Thrift和Avro,各具特点,适用于不同的应用场景和性能需求。

热门文章

最新文章