基于遗传优化GRNN和Hog特征提取的交通标志识别算法matlab仿真

简介: 本内容展示了一种基于遗传算法(GA)优化的广义回归神经网络(GRNN)与HOG特征提取的交通标志识别算法。通过算法运行效果预览,对比了GRNN与GA-GRNN在不同测试中的表现,并提供无水印完整程序运行结果。开发环境为Matlab 2022a,核心代码附有详细中文注释及操作视频。理论部分涵盖HOG特征提取、GRNN模型原理及遗传算法优化GRNN平滑因子的关键技术。HOG通过梯度方向直方图描述目标形状,具有旋转不变性和光照鲁棒性;GRNN实现非线性回归,结合遗传算法优化参数以提升性能。此方法在精度、效率和鲁棒性间取得良好平衡,适用于实时车载系统,未来可探索HOG与CNN特征融合以应对复杂场景。

1.算法运行效果图预览
(完整程序运行后无水印)

GRNN与GA-GRNN对比:

测试1(两个算法均识别正确):

image.png
image.png

测试2(GA-GRNN识别正确,GRNN识别错误):

image.png
image.png

测试3(两个算法均识别正确):

image.png
image.png

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)
```function y = func_feature2(image);

%HOG函数参数
FX_Number = 9; %9个方向
Angle = 180;%角度
CellSize = 8; %分割大小8X8
FilterSize = 0; %高斯低通滤波器大小
FilterDelta = 0; %标准偏差
move_pixel = 8; %移动像素

[R,C] = size(image);
I = zeros(floor(R/4),floor(C/4));
y = [];

l = 0.5;
r = 0.02;
c = -0.05;

for i = 1:4
for j = 1:4
I = image(R/4(i-1)+1:R/4i,C/4(j-1)+1:C/4j);
tmps = [func_HOG_Feature(image,move_pixel,FX_Number,Angle,CellSize,FilterSize,FilterDelta,32)]';
tmps2= tmps;
y = [y,tmps2];
end
end

```

4.算法理论概述
4.1 HOG
Hog(Histogram of Oriented Gradients)特征提取算法的核心思想是将图像局部区域内的梯度方向直方图作为特征描述子。它通过计算图像中每个像素点的梯度方向和幅值,将图像划分为若干个小的单元格(cell),然后在每个单元格内统计梯度方向的直方图,最后将这些直方图进行组合,形成整幅图像的 Hog 特征。

   HOG通过捕捉图像局部区域的梯度方向分布来描述目标形状特征,具有旋转不变性和光照鲁棒性。其数学流程如下:

image.png

4.2 GRNN(General Regression Neural Network)模型原理
GRNN(Generalized Regression Neural Network)即广义回归神经网络,是一种基于径向基函数的神经网络。它由输入层、模式层、求和层和输出层组成。输入层负责接收输入数据,模式层用于计算输入数据与训练样本之间的距离,求和层对模式层的输出进行加权求和,输出层则给出最终的预测结果。GRNN 的学习过程简单,只需要确定训练样本和光滑因子即可。

GRNN是一种基于Parzen窗密度估计的前馈神经网络,其结构包含四层:

image.png

4.3 遗传算法(GA)优化GRNN平滑因子
遗传算法是一种模拟自然选择和遗传机制的随机搜索算法,通过选择、交叉和变异等操作,对种群中的个体进行进化,以寻找最优解。在基于遗传优化 GRNN 和 Hog 特征提取的交通标志识别算法中,遗传算法主要用于优化 GRNN 的参数,如光滑因子、连接权值等,以提高 GRNN 的性能。

GRNN性能对平滑因子 σ 敏感,采用遗传算法全局优化:

image.png

   基于遗传优化GRNN和HOG特征提取的交通标志识别算法,通过HOG捕捉形状特征,GRNN实现非线性回归,并结合遗传算法全局优化关键参数。该方法在精度、效率和鲁棒性间取得平衡,特别适合实时性要求高的车载系统。未来可探索HOG与CNN特征融合,进一步提升复杂场景下的识别率。
相关文章
|
4天前
|
算法 索引
基于粒子群优化的模糊控制器设计与MATLAB实现
基于粒子群优化的模糊控制器设计与MATLAB实现
20 0
|
9天前
|
算法 调度
基于精英个体保留策略遗传优化的生产调度算法matlab仿真
本程序基于精英个体保留策略的遗传算法,实现生产调度优化。通过MATLAB仿真,输出收敛曲线与甘特图,直观展示调度结果与迭代过程。适用于复杂多约束生产环境,提升资源利用率与调度效率。
|
26天前
|
算法
基于BigBangBigCrunch优化(BBBC)的目标函数求解算法matlab仿真
本程序基于BigBang-BigCrunch优化算法(BBBC)实现目标函数求解的MATLAB仿真,具备良好的全局搜索与局部收敛能力。程序输出适应度收敛曲线及多变量变化曲线,展示算法迭代过程中的优化趋势。使用MATLAB 2022A运行,通过图形界面直观呈现“大爆炸”与“大坍缩”阶段在解空间中的演化过程,适用于启发式优化问题研究与教学演示。
|
27天前
|
机器学习/深度学习 算法
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
6天前
|
传感器 算法 安全
机器人路径规划和避障算法matlab仿真,分别对比贪婪搜索,最安全距离,RPM以及RRT四种算法
本程序基于MATLAB 2022A实现机器人路径规划与避障仿真,对比贪婪搜索、最安全距离、RPM和RRT四种算法。通过地图模拟环境,输出各算法的路径规划结果,展示其在避障性能与路径优化方面的差异。代码包含核心路径搜索逻辑,并附有测试运行图示,适用于机器人路径规划研究与教学演示。
117 64
|
7天前
|
存储 算法 数据安全/隐私保护
基于FPGA的图像退化算法verilog实现,分别实现横向和纵向运动模糊,包括tb和MATLAB辅助验证
本项目基于FPGA实现图像运动模糊算法,包含横向与纵向模糊处理流程。使用Vivado 2019.2与MATLAB 2022A,通过一维卷积模拟点扩散函数,完成图像退化处理,并可在MATLAB中预览效果。
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
1月前
|
算法 JavaScript 数据安全/隐私保护
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
51 10

热门文章

最新文章