REOBench:地球观测基础模型的鲁棒性评估

简介: REOBench数据集作为一个综合性测试基准被提出,用于评估地球观测基础模型在六种任务和十二种图像扰动下的鲁棒性

地球观测基础模型(Earth Observation Foundation Models)是一类用于地球观测的预训练模型,其下游应用场景众多,包括城市规划、灾害响应、环境监测等。

地球光学图像容易受天气(云、雾等)和观测设备(设备角度偏移、设备高度变化、设备数据传输等)的影响。当输入的地球光学图像受到影响时,地球观测基础模型能否稳健地工作呢?近期发表的一篇论文[1]系统性地评估了多种地球观测基础模型在完成多种地球观测任务时,针对受扰动的输入图像的鲁棒性。

Title.jpg

REOBench数据集

为了评估地球观测基础模型的鲁棒性,上述论文的作者们汇集了遥感领域的多个数据集,包括:

  • AID——遥感领域的图像场景分类(Scene Classification)基准数据集;
  • ISPRS Potsdam——遥感领域的语义分割基准数据集;
  • DIOR——遥感领域的目标检测基准数据集;
  • VRSBench数据集的部分子集,用于遥感领域的图像字幕(Image Captioning)、视觉问答(Visual Question Answering)和视觉定位(Visual Grounding)任务的评测。

为了模拟实际环境中的干扰,上述论文的作者们基于这些数据集中的图像,使用了十二种图像扰动,并且针对每种扰动,采用了五个扰动强度生成新的图像。

上述的原始图像以及受扰动图像共同构成了REOBench数据集。

十二种图像扰动包括:高斯噪音(Gaussian Noise)、椒盐噪音(Salt Pepper Noise)、高斯模糊(Gaussian Blur)、运动模糊(Motion Blur)、亮度(Brightness)、云(Cloud)、雾(Haze)、数据间隙(Data Gaps)、压缩伪影(Compression Artifacts)、旋转(Rotation)、缩放(Scaling)、以及平移(Translation)。

Figure_1.jpg

上图示例了十二种图像扰动[1];其中,第一行包括原始图像、以及经过五种不同强度的“运动模糊”扰动后的图像;下面两行是经过十二种扰动后的图像。

评估方法

通过衡量图像扰动所导致的模型性能下降,就能够评估地球观测基础模型的鲁棒性[1]。性能下降定义为模型在原始图像上的性能与在扰动后图像上性能的差值;较少的性能下降表示模型具有较强的鲁棒性。

上述论文按照以下多个维度对地球观测基础模型的鲁棒性进行了评估:

  • 不同的地球观测基础模型——包括:(1)基于掩码图像建模(Masked Image Modeling)的模型:SATLAS、SatMAE、RVSA、ScaleMAE、以及SatMAE++,(2)基于对比学习(Contrastive Learning)的模型:RemoteCLIP、以及GeoRSCLIP,(3)基于大语言模型(LLM)的模型:GeoChat、LHRS-Bot、RS-LLaVA、VHM、SkySenseGPT、GeoGround、以及Falcon;
  • 六种地球观测任务——包括:图像场景分类(Scene Classification)、语义分割、目标检测、图像字幕(Image Captioning)、视觉问答(Visual Question Answering)、以及视觉定位(Visual Grounding);
  • 上文提及的十二种图像扰动。

评估结果

评估结果显示,现有的地球观测基础模型在面临图像扰动时均出现性能下降。不同的模型架构、模型骨干大小、地球观测任务类型、以及图像扰动类型所对应的性能下降幅度各异,从不到1%到超过20%不等。基于LLM的地球观测基础模型在大多数扰动类型下表现出相对较强的鲁棒性,性能下降的幅度通常低于5%。

局限性及其它

REOBench数据集为地球观测基础模型提供了重要的评估工具,但其仍存在一些局限性,例如:

  • 仅涵盖了高分辨率光学图像,未涵盖多光谱、高光谱和合成孔径雷达(SAR)等其它模态的数据;
  • 涵盖的地球观测任务未包括变化检测(Change Detection)、区域字幕(Region Captioning)、目标计数(Object Counting)等,未来有待进一步扩展任务涵盖范围。

上述论文的代码和数据公开在https://github.com/lx709/REOBench、以及https://huggingface.co/datasets/xiang709/REOBench

附录:地球观测任务示例

Figure_6.jpg
目标检测任务的示例[1],其中,上下两行分别为原始图像及其目标检测结果


Figure_5.jpg
语义分割任务的示例[1],其中,上下两行分别为原始图像及其语义分割结果


Figure_7.jpg

图像字幕(Image Captioning)任务示例[1],其中,GT代表Ground Truth(真实值)



Figure_8.jpg

视觉问答(Visual Question Answering)任务示例[1],其中,GT代表Ground Truth(真实值)


参考文献

[1] REOBench: Benchmarking Robustness of Earth Observation Foundation Models

https://arxiv.org/abs/2505.16793

使用许可协议:CC BY

https://creativecommons.org/licenses/by/4.0/

目录
相关文章
|
编解码 人工智能
蚂蚁百灵大模型推出20亿参数遥感模型SkySense
【2月更文挑战第13天】蚂蚁百灵大模型推出20亿参数遥感模型SkySense
712 1
蚂蚁百灵大模型推出20亿参数遥感模型SkySense
|
存储 人工智能 大数据
Huggingface又上不去了?这里有个新的解决方案!
AI开发者都知道,HuggingFace是一个高速发展的社区,包括Meta、Google、Microsoft、Amazon在内的超过5000家组织机构在为HuggingFace开源社区贡献代码、数据集和模型。
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch基础之激活函数模块中Sigmoid、Tanh、ReLU、LeakyReLU函数讲解(附源码)
PyTorch基础之激活函数模块中Sigmoid、Tanh、ReLU、LeakyReLU函数讲解(附源码)
1264 0
|
4月前
|
机器学习/深度学习 监控 算法
基于YOLOv8的智能鼠类目标检测系统 | 室内外老鼠自动识别与追踪【含完整训练源码+部署教程】
在城市环境、食品工厂、仓储物流以及实验室等场景中,老鼠(鼠类)检测需求逐渐增加。传统的红外检测或人工排查手段存在成本高、误报多、实时性差的问题。本项目结合深度学习中的YOLOv8目标检测算法,训练了专门用于识别“老鼠”目标的模型,可快速部署至视频监控系统、摄像头终端、图像分析平台等环境中,真正实现实时、高效、准确的鼠类识别,为智能化鼠害防控系统提供核心技术支撑。
基于YOLOv8的智能鼠类目标检测系统 | 室内外老鼠自动识别与追踪【含完整训练源码+部署教程】
|
6月前
|
机器学习/深度学习 自然语言处理 算法
万字长文详解|DLRover LLM Agent:大模型驱动的高效集群资源调优
本文介绍了DLRover LLM Agent,展示了基于 LLM 上下文学习能力的优化算法设计理念以及在DLRover 资源调优上的应用方法和效果。
|
8月前
|
Web App开发 缓存 iOS开发
OpenCore Legacy Patcher 2.3.0 发布,重点优化对 macOS Sequoia 15.4 的支持
OpenCore Legacy Patcher 2.3.0 发布,重点优化对 macOS Sequoia 15.4 的支持
1384 1
OpenCore Legacy Patcher 2.3.0 发布,重点优化对 macOS Sequoia 15.4 的支持
|
机器学习/深度学习 存储 自然语言处理
SeACo-Paraformer
【6月更文挑战第14天】
820 6
|
机器学习/深度学习 编解码 测试技术
【YOLOv8改进】LSKNet(Large Selective Kernel Network ):空间选择注意力 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO的有效改进和实战应用,包括卷积、主干网络、注意力机制和检测头的创新。提出的新模型LSKNet利用大型选择性核关注遥感场景的先验知识,动态调整感受野,提升目标检测效果。创新点包括LSKblock Attention、大型选择性核网络和适应性感受野调整。LSKNet在多个遥感检测基准上取得最优性能,且结构轻量。此外,文章提供了YOLOv8的LSKNet实现代码。更多详情可查阅相关专栏链接。
|
数据采集 Web App开发 JSON
爬虫实战小案例—获取喜马拉雅账号的关注数据和粉丝数据生成电子表格并实现批量关注或者取关然后生成表格文件
爬虫实战小案例—获取喜马拉雅账号的关注数据和粉丝数据生成电子表格并实现批量关注或者取关然后生成表格文件
314 0
|
算法 测试技术 异构计算
【SAM模型超级进化】MobileSAM轻量化的分割一切大模型出现,模型缩小60倍,速度提高40倍,效果不减
【SAM模型超级进化】MobileSAM轻量化的分割一切大模型出现,模型缩小60倍,速度提高40倍,效果不减