5个开源MCP服务器:扩展AI助手能力,高效处理日常工作

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
Elasticsearch Serverless检索通用型,资源抵扣包 100CU*H
简介: AI大语言模型虽强大,但其原生能力仅限于文本对话,难以直接与外部世界交互。MCP(Model Context Protocol)服务器技术作为桥梁,赋予AI实质性环境交互能力,如浏览网页、分析数据等。本文基于实际经验,精选五种开源MCP服务器实现:Stagehand用于网络内容提取;Jupyter适用于数据分析;Opik提供AI行为监控;GitHub集成代码仓库管理;FastAPI-MCP支持自定义API集成。这些工具免费且可定制,为构建实用AI系统奠定基础。文章还提供了配置指南和应用场景剖析,助读者快速上手。

AI大语言模型(如Claude、GPT)尽管强大,但其原生形态仅限于文本对话,无法直接与外部世界交互。这一局限严重制约了AI在实际应用场景中的价值发挥 - 无法主动获取实时数据、无法操作外部系统、无法访问用户私有资源。

MCP(Model Context Protocol)服务器技术应运而生,它作为AI与外部环境的"桥梁",赋予AI模型实质性的环境交互能力。通过MCP,AI可以浏览网页、分析数据、监控系统、管理代码仓库,甚至操作自定义API。这种能力扩展不仅提升了AI助手的实用性,更为构建真正"能干活"的AI应用奠定了基础。

本文基于实际部署和使用经验,精选了五种开源MCP服务器实现,从配置到应用场景进行全面剖析,助您快速构建具备环境交互能力的AI系统。

MCP服务器技术概述

MCP(Model Context Protocol,模型上下文协议)是一种专为AI与外部环境通信设计的技术协议。它使Claude等AI模型能够与网站、代码环境等外部系统建立有效连接。在没有MCP的情况下,AI模型只能基于其训练数据进行推理,无法获取实时外部信息。

通过MCP协议,用户可以实现诸如"请Claude获取GitHub的issues列表"等指令,并获得基于实时数据的准确响应。初次成功配置并运行MCP服务器时,其扩展AI能力的效果令人印象深刻,如同为AI提供了与外部世界交互的新接口。

以下是五种经过实际评估的MCP服务器实现。

1、Stagehand:网络浏览与内容提取工具

Stagehand是Browserbase开发的专业网络交互工具,它赋予AI模拟浏览器操作的能力,包括导航链接、提取网页内容等功能。在实际应用中,我利用它从特定美食博客批量获取食谱标题数据,这种方式比传统的脚本编写效率高出许多。

部署步骤如下:

 git clone https://github.com/browserbase/stagehand-mcp  
 cd stagehand-mcp  
 npm install  
 npmstart

服务器默认在localhost:3000运行。配置完成后,可以通过Claude Desktop等支持MCP的客户端向AI发出指令:

 Go to a news site and get the top headlines.

Stagehand会执行网站访问、内容提取操作,Claude随后输出结构化的标题信息。这一功能对于无需编写代码即可实现价格监控、数据提取等任务特别有价值。

Stagehand作为开源免费工具,相比其他网络交互工具,其稳定性和可靠性表现更为出色。

2、Jupyter:数据分析与处理集成方案

Jupyter MCP服务器专为数据处理场景设计,它使AI能够操作Jupyter notebooks这一数据科学领域常用的编程环境。即使对非数据科学专业人员,这一工具也能显著降低数据分析门槛。例如,我通过该服务器让Claude分析存储在CSV文件中的咖啡消费数据记录。

配置方法:

 git clone https://github.com/jjsantos01/jupyter-notebook-mcp  
 cd jupyter-notebook-mcp  
 pip install -r requirements.txt  
 python server.py

服务器运行在localhost:8000。配置完成后,可以向Claude发出如下指令:

 Open coffee.csv and tell me how much I spent on lattes.

Claude会自动创建notebook、执行必要的Python代码分析,然后返回结果:

 You dropped $87.50 on lattes this month. Ouch.

这种集成方式无需用户编写任何代码,效果相当于拥有一位具备数据分析能力的技术助手。

3、Opik:AI行为监控与分析系统

Opik是由Comet开发的专业AI监控工具,其核心功能是跟踪和分析AI系统的运行状态。当AI表现出非预期行为时,Opik能够提供详细的诊断信息。在实际应用中,我曾通过Opik发现某AI应用因API限制而出现的响应异常。

部署流程:

 git clone https://github.com/comet-ml/opik  
 cd opik  
 ./opik.sh

在代码中集成Opik的示例:

 importopik  

opik.configure(use_local=True)  

@opik.track  
defask_something(question):  
    return"You asked: "+question  

 ask_something("What's for dinner?")

通过向Claude发出以下指令可查看监控日志:

 Show me what my AI's been up to.

系统将显示每次函数调用的详细信息,包括执行时间和相关参数。

Opik实质上是AI系统的监控层,有助于快速识别和解决性能或行为问题。

4、GitHub:代码仓库集成解决方案

GitHub官方开发的MCP服务器提供了与GitHub代码仓库的深度集成。这一工具特别适用于需要快速了解项目状态而不希望在多个界面间切换的场景。通过该服务器,Claude能够提供仓库问题的简明摘要。

配置过程:

git clone https://github.com/github/github-mcp-server  
cd github-mcp-server  
npm install  
export GITHUB_TOKEN=your_token  
npm start

服务器运行在localhost:4000。配置完成后,可以向Claude发出如下查询:

Claude, what's up with my repo 'side-hustle'?

Claude会返回仓库状态概要:

Two issues open: one's a bug in the login, another's about adding a share button.

这一集成方案有效减少了GitHub通知管理的复杂性,提供了更高效的项目状态跟踪方式。

5、FastAPI-MCP:API集成开发框架

FastAPI-MCP是一款将FastAPI应用转换为AI可访问资源的工具。在实际应用中,我开发了一个管理待办事项的简单API,通过FastAPI-MCP使Claude能够直接查询这些数据。

部署步骤:

git clone https://github.com/jlowin/fastmcp  
cd fastmcp  
pip install fastapi-mcp

FastAPI应用集成示例:

from fastapi import FastAPI  
from fastmcp import mcp  

app = FastAPI()  

@app.get("/todo/{item_id}")  
async def get_todo(item_id: int):  
    return {"id": item_id, "task": f"Task {item_id}"}  

@mcp.tool()  
async def get_todo_tool(item_id: int):  
    return await get_todo(item_id)

使用

uvicorn main:app --reload

启动服务器,连接到localhost:8000后,可以向Claude发出查询:

What's task 5 on my to-do list?

得到响应:

Task 5 is "Call mom."

FastAPI-MCP大大简化了为AI模型创建自定义工具的过程,提供了高度灵活的集成方案。

总结

这五种MCP服务器各具特色:Stagehand在网络内容处理方面表现出色,Jupyter适用于数据分析场景,Opik提供了系统透明性,GitHub服务器为开发者提供便利,而FastAPI-MCP则提供了高度自定义的解决方案。这些开源工具不仅免费使用,还可以根据特定需求进行定制。

基于实践经验,提出以下建议:

从个人熟悉且感兴趣的领域入手,例如已经频繁使用GitHub的开发者可优先尝试GitHub MCP服务器。Claude Desktop等支持MCP的客户端是测试这些服务器的理想工具。在实际部署前,建议详细阅读各服务器在GitHub上的文档,并在本地环境中充分测试和熟悉其功能。

https://avoid.overfit.cn/post/66bddd8e13104b409971c64261e58374

作者:Code Pulse

目录
相关文章
|
25天前
|
消息中间件 人工智能 自然语言处理
DeepWiki × LoongCollector:AI 重塑开源代码理解
本文探讨了开源项目LoongCollector的复杂性及其对开发者带来的挑战,介绍了DeepWiki作为AI驱动的智能文档生成工具如何解决这些问题。DeepWiki通过结构化文档、交互式流程图和核心数据结构解析,帮助开发者快速理解项目架构与逻辑。同时,其内置的AI对话助手可实时解答技术疑问,提供场景化指导,如问题排查、源码学习路径制定及开发指导。文章还展示了DeepWiki在优化LoongCollector插件开发、提升社区贡献效率方面的实际应用,并展望了AI重构开源协作范式的未来潜力。
395 43
|
24天前
|
人工智能 自然语言处理 数据可视化
中国版“Manus”开源?AiPy:用Python重构AI生产力的通用智能体
AiPy是LLM大模型+Python程序编写+Python程序运行+程序可以控制的一切。
|
15天前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
70 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
24天前
|
机器学习/深度学习 人工智能 Kubernetes
开源AI驱动的商业综合体保洁管理——智能视频分析系统的技术解析
智能保洁管理系统通过计算机视觉与深度学习技术,解决传统保洁模式中监管难、效率低的问题。系统涵盖垃圾滞留监测、地面清洁度评估、设施表面检测等功能,实现高精度(96%以上)、实时响应(<200毫秒)。基于开源TensorFlow与Kubernetes架构,支持灵活部署与定制开发,适用于商场、机场等场景,提升管理效率40%以上。未来可扩展至气味监测等领域,推动保洁管理智能化升级。
102 26
|
18天前
|
机器学习/深度学习 人工智能 运维
AI加持的系统性能优化:别让你的服务器“累趴下”
AI加持的系统性能优化:别让你的服务器“累趴下”
73 12
|
18天前
|
人工智能 数据安全/隐私保护 Docker
短短时间,疯狂斩获1.9k star,开源AI神器AingDesk:一键部署上百模型,本地运行还能联网搜索!
AingDesk 是一款开源的本地 AI 模型管理工具,已获 1.9k Star。它支持一键部署上百款大模型(如 DeepSeek、Llama),适配 CPU/GPU,可本地运行并联网搜索。五大核心功能包括零门槛模型部署、实时联网搜证、私人知识库搭建、跨平台共享和智能体工厂,满足学术、办公及团队协作需求。相比 Ollama 和 Cherry Studio,AingDesk 更简单易用,适合技术小白、团队管理者和隐私敏感者。项目地址:https://github.com/aingdesk/AingDesk。
154 3
|
11天前
|
人工智能 自然语言处理 前端开发
上线几天,轻松斩获10k,开源通用AI智能体Suna:一句话自动处理Excel/爬数据/写报告,程序员私人助理诞生!
Suna是由Kortix推出的全球首个开源通用型AI Agent,可通过自然语言对话自动完成浏览器操作、数据分析、系统管理等复杂任务。它具有“执行力”,能像人类员工一样理解指令并操作数字工具,支持自托管保障数据安全,适用于市场分析、学术研究、企业办公等场景。Suna的核心优势在于实现“语言→行动”的转化,适合需要实际操作的任务,如爬虫、报表生成和网站部署。项目地址为:https://github.com/kortix-ai/suna。
|
15天前
|
数据采集 人工智能 算法
面向AI应用开发的开源能源管理系统
人工智能在能源管理中发挥关键作用,通过优化资源分配、智能消费管理、精准监测预测以及改善客户体验等多方面推动行业转型。MyEMS作为重要工具,基于Python语言集成AI技术,实现数据采集处理、负荷预测、能源优化控制、故障诊断预警及可视化展示等功能,提供全面智能化解决方案,助力可持续发展与能源效率提升。
35 0
|
机器学习/深度学习 人工智能 算法
|
1月前
|
开发框架 人工智能 Java
破茧成蝶:阿里云应用服务器让传统 J2EE 应用无缝升级 AI 原生时代
本文详细介绍了阿里云应用服务器如何助力传统J2EE应用实现智能化升级。文章分为三部分:第一部分阐述了传统J2EE应用在智能化转型中的痛点,如协议鸿沟、资源冲突和观测失明;第二部分展示了阿里云应用服务器的解决方案,包括兼容传统EJB容器与微服务架构、支持大模型即插即用及全景可观测性;第三部分则通过具体步骤说明如何基于EDAS开启J2EE应用的智能化进程,确保十年代码无需重写,轻松实现智能化跃迁。
245 39