基于FPGA的SNN脉冲神经网络之IM神经元verilog实现,包含testbench

简介: 本内容介绍了一种基于Izhikevich-Memristive(IM)神经元模型的算法,该模型结合忆阻器特性和神经元动力学,适用于神经形态计算。算法通过Vivado2019.2运行,提供无水印运行效果预览及部分核心程序,完整版含中文注释与操作视频。理论部分详细解析了Izhikevich神经元方程及其放电行为,包括膜电位、恢复变量等参数的作用,并探讨了IM模型在人工智能和脑机接口领域的应用潜力。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg

2.算法运行软件版本
vivado2019.2

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2020/07/21 07:25:33
// Design Name:
// Module Name: SNN_IM
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:

module SNN_tops(
input i_clk,
input i_rst,
output signed[31:0]o_v1,
output signed[31:0]o_u1,
output signed[31:0]o_vL1,
output signed[31:0]o_v2,
output signed[31:0]o_u2,
output signed[31:0]o_vL2,
output signed[31:0]o_v3,
output signed[31:0]o_u3,
output signed[31:0]o_vL3
);

//神经元1
IM_neuro IM_neuro_u1(
.i_clk(i_clk),
.i_rst(i_rst),
.Isyn (32'd40000),
.o_v (o_v1),
.o_u (o_u1),
.o_vL (o_vL1)
);
//神经元2
IM_neuro IM_neuro_u2(
.i_clk(i_clk),
.i_rst(i_rst),
.Isyn (32'd50000),
.o_v (o_v2),
.o_u (o_u2),
.o_vL (o_vL2)
);

//神经元3
IM_neuro IM_neuro_u3(
.i_clk(i_clk),
.i_rst(i_rst),
.Isyn (32'd60000),
.o_v (o_v3),
.o_u (o_u3),
.o_vL (o_vL3)
);

endmodule

```

4.算法理论概述
脉冲神经网络(Spiking Neural Network,SNN)是第三代人工神经网络,它更接近生物神经元的工作方式。其中,Izhikevich - Memristive(IM)神经元模型是一种结合了忆阻器(Memristor)特性和 Izhikevich 神经元动力学的模型,在神经形态计算和复杂神经动力学模拟等领域具有重要的应用价值。

  Izhikevich 神经元模型的基本方程为:

image.png

   其中v是神经元的膜电位,u是恢复变量,用于控制神经元的不应期等特性。a、b是模型参数,不同的参数组合可以模拟出不同类型的神经元放电行为,如规则发放、快速发放、发放后抑制等。是外部输入电流,它对神经元的膜电位变化起到驱动作用。

image.png

其中c和d是重置参数,与神经元的恢复特性有关。这种发放机制使得 Izhikevich 神经元能够产生类似于生物神经元的脉冲序列。

   IM 神经元模型将忆阻器引入到 Izhikevich 神经元模型中,用忆阻器来调节神经元的输入电流或者神经元内部的一些参数。具体来说,忆阻器可以放置在输入通路中,使得输入电流经过忆阻器后再进入神经元。

   IM 神经元模型作为一种结合了忆阻器和 Izhikevich 神经元动力学的模型,具有复杂的动力学行为和潜在的应用价值。通过对其原理的深入理解,包括神经元动力学方程的修正、忆阻器与神经元的协同作用、参数对放电模式的影响以及在神经形态计算中的应用等方面,我们可以更好地利用这个模型来开发高效的神经形态计算系统和复杂的信息处理应用。随着技术的不断发展,IM 神经元模型有望在人工智能、脑机接口等众多领域发挥重要作用。
相关文章
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于FPGA的SNN脉冲神经网络之LIF神经元verilog实现,包含testbench
本项目展示了 LIF(Leaky Integrate-and-Fire)神经元算法的实现与应用,含无水印运行效果预览。基于 Vivado2019.2 开发,完整代码配有中文注释及操作视频。LIF 模型模拟生物神经元特性,通过积分输入信号并判断膜电位是否达阈值产生脉冲,相较于 Hodgkin-Huxley 模型更简化,适合大规模神经网络模拟。核心程序片段示例,助您快速上手。
|
9月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【9月更文挑战第12天】在当今科技飞速发展的时代,人工智能(AI)已深入我们的生活,从智能助手到自动驾驶,从医疗诊断到金融分析,其力量无处不在。这一切的核心是神经网络。本文将带领您搭乘Python的航船,深入AI的大脑,揭秘智能背后的秘密神经元。通过构建神经网络模型,我们可以模拟并学习复杂的数据模式。以下是一个使用Python和TensorFlow搭建的基本神经网络示例,用于解决简单的分类问题。
84 10
|
10月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
157 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
16天前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
53 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
149 9
|
11月前
|
机器学习/深度学习 编解码 数据可视化
图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
目前我们看到有很多使用KAN替代MLP的实验,但是目前来说对于图神经网络来说还没有类似的实验,今天我们就来使用KAN创建一个图神经网络Graph Kolmogorov Arnold(GKAN),来测试下KAN是否可以在图神经网络方面有所作为。
286 1
|
10月前
|
机器学习/深度学习 Linux TensorFlow
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
163 0
|
10月前
|
安全 Apache 数据安全/隐私保护
你的Wicket应用安全吗?揭秘在Apache Wicket中实现坚不可摧的安全认证策略
【8月更文挑战第31天】在当前的网络环境中,安全性是任何应用程序的关键考量。Apache Wicket 是一个强大的 Java Web 框架,提供了丰富的工具和组件,帮助开发者构建安全的 Web 应用程序。本文介绍了如何在 Wicket 中实现安全认证,
108 0