ReSearch:基于强化学习的大语言模型推理搜索框架

本文涉及的产品
Elasticsearch Serverless检索通用型,资源抵扣包 100CU*H
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: ReSearch是一种创新框架,利用强化学习训练大语言模型执行“推理搜索”,无需监督数据。它将搜索操作融入推理链,通过文本推理决定搜索时机与方式,并用搜索结果引导后续推理。研究显示,ReSearch自然形成高级推理能力,如反思与自我纠正。技术上,采用特定标签封装搜索查询与结果,迭代生成响应。实验基于Qwen2.5等模型,使用MuSiQue数据集训练,在多跳问答任务中显著超越基线模型,展现出强大泛化能力。动态分析表明,模型逐渐学会通过迭代搜索解决复杂问题,奖励指标也呈现稳定增长趋势。

ReSearch是一种创新性框架,通过强化学习技术训练大语言模型执行"推理搜索",无需依赖推理步骤的监督数据。该方法将搜索操作视为推理链的有机组成部分,其中搜索的时机与方式由基于文本的推理过程决定,而搜索结果进一步引导后续推理。研究分析表明,ReSearch在强化学习训练过程中自然地形成了高级推理能力,包括反思与自我纠正机制。

技术方法

ReSearch的训练架构概述

与传统的仅包含文本推理的推理过程相比,ReSearch框架中的推理过程融合了搜索查询与检索结果。系统采用

<search>

</search>

标签来封装搜索查询,使用

<result>

</result>

标签来封装检索结果,这些格式规范在提示模板中明确定义。整个推理过程构成了基于文本的思考、搜索查询和检索结果之间的迭代循环。具体实现中,当生成过程遇到

</search>

标签时,系统会提取最近的

<search>

与当前

</search>

标签之间的内容作为查询语句,用于检索相关事实信息,检索结果则被

<result>

</result>

标签封装。随后,系统将现有推理与检索结果串联作为下一轮输入,以迭代方式生成后续响应,直至生成过程遇到结束句子(EOS)标记。

基础模型的提示模板:

 A conversation between User and Assistant. 
The user asks a question, and the assistant solves it. 
The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. 
During thinking, the assistant can invoke the wikipedia search tool to search for fact information about specific topics if needed. 
The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags respectively,
and the search query and result are enclosed within <search> </search> and <result> </result> tags respectively. 
For example, 
<think> This is the reasoning process. </think>
<search> search query here </search> 
<result> search result here </result> 
<think> This is the reasoning process. </think> 
<answer> The final answer is \boxed{answer here} </answer>. 
In the last part of the answer, the final exact answer is enclosed within \boxed{} with latex format. 
 User: prompt. Assistant:

指令模型的系统提示:

 You are a helpful assistant that can solve the given question step by step with the help of the wikipedia search tool. 
Given a question, you need to first think about the reasoning process in the mind and then provide the answer. 
During thinking, you can invoke the wikipedia search tool to search for fact information about specific topics if needed. 
The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags respectively,
and the search query and result are enclosed within <search> </search> and <result> </result> tags respectively. 
For example, 
<think> This is the reasoning process. </think>
<search> search query here </search> 
<result> search result here </result> 
<think> This is the reasoning process. </think> 
<answer> The final answer is \boxed{answer here} </answer>. 
 In the last part of the answer, the final exact answer is enclosed within \boxed{} with latex format.

与原始GRPO不同,ReSearch中的损失函数计算经过了特殊处理。由于推理过程中包含的检索结果并非由训练策略生成,而是由搜索环境检索得到,因此在损失计算中对检索结果部分进行了掩码处理,以避免训练策略对检索结果产生不必要的偏好。

ReSearch的奖励函数设计包含两个核心组成部分:答案奖励和格式奖励:

  • 答案奖励:通过F1分数计算\boxed{}中的最终答案与真实答案之间的正确性。
  • 格式奖励:验证推理过程是否正确遵循了提示模板中规定的格式规范,重点检查标签的正确使用以及答案中\boxed{}的存在。

推理过程的最终奖励函数表达式如下:

实验配置

研究团队在Qwen2.5–7B、Qwen2.5–7B-Instruct、Qwen2.5–32B和Qwen2.5–32B-Instruct模型上进行了训练与评估。训练仅使用MuSiQue的训练集(19,938个样本),该数据集包含多种类型的多跳问题,并经过严格的质量控制构建。模型训练周期为2个完整周期。

在知识检索方面,研究采用E5-base-v2作为检索引擎,选用2018年12月的Wikipedia数据作为知识库。

评估采用了四个标准基准测试集来评估多跳问答任务性能:HotpotQA、WikiMultiHopQA、MuSiQue和Bamboogle。其中,HotpotQA、WikiMultiHopQA和MuSiQue通过不同的众包多跳挖掘策略在维基百科或维基数据中构建,而Bamboogle则是一个手动构建的挑战性数据集,包含双跳问题,其难度足以使主流互联网搜索引擎无法提供准确答案。

评估结果

多跳问答基准测试上的精确匹配(EM,%)和LLM-as-a-Judge(LJ,%)评估结果

ReSearch框架在评估中展现了显著的性能优势:

  • 显著超越基线模型:在所有基准测试中,ReSearch相比最佳基线模型,7B参数规模模型在精确匹配指标上平均提升了15.81%,在LLM-as-a-Judge指标上提升了17.56%;32B参数规模模型在精确匹配指标上平均提升了14.82%,在LLM-as-a-Judge指标上提升了15.46%。
  • 指令微调效果显著:以指令微调过的LLM作为ReSearch的基础模型,相较于使用基础LLM,性能获得进一步提升。这一现象在所有基准测试和不同模型规模上均表现一致。
  • 泛化能力强劲:尽管仅在MuSiQue数据集上进行训练,ReSearch仍能有效泛化到其他具有不同问题类型和结构的基准测试中,证明所学习的推理能力具有跨数据集的通用性。

训练过程中的响应长度和搜索操作数量变化

训练动态分析揭示了以下规律:

  • 响应长度呈增长趋势:响应长度在训练过程中普遍呈现增长趋势,指令微调模型生成的响应通常长于基础模型。32B规模模型展现了独特的模式,初始阶段响应长度下降,随后再次上升,这可能反映了模型从依赖固有知识到有效利用检索结果的学习过程转变。
  • 搜索操作持续增加:搜索操作数量在整个训练过程中稳步增长,表明模型逐渐学习到如何通过迭代搜索解决复杂多跳问题的能力。

训练过程中的训练和验证奖励变化

奖励指标分析表明:

  • 奖励增长模式:训练和验证奖励在初始训练阶段呈现急剧上升趋势,随后进入平缓的持续提升阶段。指令微调模型从较高的奖励水平开始训练。7B规模模型最终收敛至相近的奖励水平,而32B指令微调模型始终维持高于其基础对应模型的奖励水平。

论文:https://arxiv.org/abs/2503.19470

github:https://github.com/Agent-RL/ReSearch

作者:Ritvik Rastogi

目录
相关文章
|
人工智能 算法 数据可视化
AI Earth ——开发者模式案例6:决策树模型实现冬小麦提取
AI Earth ——开发者模式案例6:决策树模型实现冬小麦提取
141 2
|
文字识别 前端开发
CodeFuse-VLM 开源,支持多模态多任务预训练/微调
随着huggingface开源社区的不断更新,会有更多的vision encoder 和 LLM 底座发布,这些vision encoder 和 LLM底座都有各自的强项,例如 code-llama 适合生成代码类任务,但是不适合生成中文类的任务,因此用户常常需要根据vision encoder和LLM的特长来搭建自己的多模态大语言模型。针对多模态大语言模型种类繁多的落地场景,我们搭建了CodeFuse-VLM 框架,支持多种视觉模型和语言大模型,使得MFT-VLM可以适应不同种类的任务。
976 0
|
2月前
|
机器学习/深度学习 存储 人工智能
SEARCH-R1: 基于强化学习的大型语言模型多轮搜索与推理框架
SEARCH-R1是一种创新的强化学习框架,使大型语言模型(LLM)具备多轮搜索与推理能力。它通过强化学习自主生成查询并优化基于检索结果的推理,无需人工标注数据。相比传统RAG或工具使用方法,SEARCH-R1显著提升问答性能,在多个数据集上实现26%以上的相对性能提升。其核心优势在于强化学习与搜索的深度融合、交错式多轮推理机制及令牌级损失屏蔽技术,推动了LLM在复杂推理和实时知识获取方面的边界。尽管存在奖励函数设计简化等局限性,SEARCH-R1为构建更智能的交互系统提供了重要参考。
177 7
SEARCH-R1: 基于强化学习的大型语言模型多轮搜索与推理框架
|
2月前
|
机器学习/深度学习 数据可视化
Visual-RFT:基于强化学习的视觉语言模型微调技术研究
Visual-RFT 是一种创新的视觉语言模型微调技术,结合基于规则的可验证奖励与强化学习,克服了传统监督微调在数据稀缺场景下的局限。它通过渐进式推理和多样化响应生成,优化模型在对象检测、图像分类等任务中的表现,尤其适用于少样本学习。该方法采用组相对策略优化(GRPO)进行参数更新,简化了强化学习流程,同时保持高效性。实验结果表明,Visual-RFT 在细粒度分类和推理定位等任务中显著优于传统方法,展示了其在实际应用中的巨大潜力。
137 1
Visual-RFT:基于强化学习的视觉语言模型微调技术研究
|
5月前
|
数据采集 前端开发 物联网
【项目实战】通过LLaMaFactory+Qwen2-VL-2B微调一个多模态医疗大模型
本文介绍了一个基于多模态大模型的医疗图像诊断项目。项目旨在通过训练一个医疗领域的多模态大模型,提高医生处理医学图像的效率,辅助诊断和治疗。作者以家中老人的脑部CT为例,展示了如何利用MedTrinity-25M数据集训练模型,经过数据准备、环境搭建、模型训练及微调、最终验证等步骤,成功使模型能够识别CT图像并给出具体的诊断意见,与专业医生的诊断结果高度吻合。
【项目实战】通过LLaMaFactory+Qwen2-VL-2B微调一个多模态医疗大模型
|
6月前
|
机器学习/深度学习 人工智能 PyTorch
使用Pytorch构建视觉语言模型(VLM)
视觉语言模型(Vision Language Model,VLM)正在改变计算机对视觉和文本信息的理解与交互方式。本文将介绍 VLM 的核心组件和实现细节,可以让你全面掌握这项前沿技术。我们的目标是理解并实现能够通过指令微调来执行有用任务的视觉语言模型。
148 2
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
LLMs 入门实战系列大全:LLMs应用、领域大模型介绍、大模型常见面经汇总
LLMs 入门实战系列大全:LLMs应用、领域大模型介绍、大模型常见面经汇总
LLMs 入门实战系列大全:LLMs应用、领域大模型介绍、大模型常见面经汇总
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
|
8月前
|
搜索推荐 算法
模型小,还高效!港大最新推荐系统EasyRec:零样本文本推荐能力超越OpenAI、Bert
【9月更文挑战第21天】香港大学研究者开发了一种名为EasyRec的新推荐系统,利用语言模型的强大文本理解和生成能力,解决了传统推荐算法在零样本学习场景中的局限。EasyRec通过文本-行为对齐框架,结合对比学习和协同语言模型调优,提升了推荐准确性。实验表明,EasyRec在多个真实世界数据集上的表现优于现有模型,但其性能依赖高质量文本数据且计算复杂度较高。论文详见:http://arxiv.org/abs/2408.08821
245 7
|
12月前
|
人工智能 Python
LLM 大模型学习必知必会系列(八):10分钟微调专属于自己的大模型
LLM 大模型学习必知必会系列(八):10分钟微调专属于自己的大模型