MindIE Torch快速上手

简介: MindIE Torch 是一款高效的深度学习推理优化工具,支持 PyTorch 模型在 NPU 上的高性能部署。其核心特性包括:1) 子图与单算子混合执行,配合 torch_npu 实现高效推理;2) 支持 C++ 和 Python 编程语言,灵活适配不同开发需求;3) 兼容多种模式(TorchScript、ExportedProgram、torch.compile),覆盖广泛场景;4) 支持静态与动态 Shape 模型编译,满足多样化输入需求。通过简单易用的 API,开发者可快速完成模型加载、编译优化、推理执行及离线模型导出等全流程操作,显著提升开发效率与性能表现。

MindIE Torch整体介绍

整体架构

image.png

推理迁移工作流

1744687931654_image.png

关键特性

特性1:配合torch_npu实现子图+单算子混合执行

1744688065457_image.png

特性2:支持C++和Python编程

c++伪代码(适用于TorchScript路线):

// load TorchScript module
torch::jit::script::Module module = torch::jit::load("xxx.pth"); 

// step1:compile
torch_aie::torchscript::CompileSpec compileSpec(inputsInfo);
auto compiled_module = torch_aie::torchscript::compile(module, compileSpec);

 // step2:forward
npu_results = compiled_module.forward(input);

python伪代码(适用于TorchScript路线):

# load TorchScript module
model = torch.jit.load("xxx.pth") 

# step1:compile
compiled_module = mindietorch.compile(model, inputs=inputs_info) 

# step2:forward
npu_results = compiled_module.forward(input_data)

特性3:支持TorchScript、ExportedProgram多种模式

  • TorchScript模式
    支持对torch.jit.trace/script导出的TorchScript模型进行编译优化
# load TorchScript module
model = torch.jit.load("xxx.pth") 

# step1:compile
compiled_module = mindietorch.compile(model, inputs=inputs_info) 

# step2:forward
npu_results = compiled_module.forward(input_data)
  • torch.export 模式
    支持对torch.export导出的ExportedProgram进行编译优化
# load PyTorch nn.module
model = torch.load("xxx.pth")
# 在使用MindIE Torch之前用户可以选择提前导出ExportedProgram
exported_model = torch.export.export(model, args=tuple(input_data,))

# step1:compile
# 当传入一个nn.Module时, MindIE Torch内部会先导出ExportedProgram, 再进行编译优化
compiled_module = mindietorch.compile(model, inputs=inputs_info, ir="dynamo") 
# 当传入一个ExportedProgram时, MindIE Torch会直接进行编译优化
compiled_module = mindietorch.compile(exported_model, inputs=inputs_info, ir="dynamo")

# step2:forward
npu_results = compiled_module.forward(input_data)
  • torch.compile 路线
    提供了名为mindie的编译后端,支持在推理时对torch.compile;
    生成的GraphModule进行即时编译优化。
# load PyTorch nn.module
model = torch.load("xxx.pth")

# step1:准备待执行模型,此时并不会进行模型的编译优化
opt_model = torch.compile(model, backend="mindie")
# 或
opt_model = mindietorch.compile(model, ir="torch_compile")

# step2:执行推理,此时PyTorch才会调用MindIE Torch的自定义后端进行模型编译,编译完成之后才开始推理
npu_results = opt_model(input_data)

特性4:支持静态Shape、动态Shape模型编译

  • 静态shape
import torch 
import mindietorch

# 纯静态shape,单输入
inputs = [mindietorch.Input((batchsize, 3, 224, 224))] # batchsize 自行写入

# 纯静态shape,多输入
inputs = [mindietorch.Input((batchsize, 3, 224, 224)), mindietorch.Input((batchsize, 3, 224, 224))]
  • 动态分档
import torch 
import mindietorch

# 动态分档
inputs = []
inputs_gear_1 = [mindietorch.Input((1, 3, 224, 224))]  # 1档
inputs_gear_2 = [mindietorch.Input((8, 3, 224, 224))]  # 2档
inputs_gear_3 = [mindietorch.Input((32, 3, 224, 224))]  # 3档
inputs.append(inputs_gear_1)
inputs.append(inputs_gear_2)
inputs.append(inputs_gear_3)
  • ShapeRange
import torch 
import mindietorch

# input shape range
min_shape = (1, 3, 224, 224)
max_shape = (32, 3, 224, 224)
inputs = []
inputs.append(mindietorch.Input(min_shape = min_shape, max_shape= max_shape)) # inputs 作为最终的模型输入设置。

MindIE Torch demo开发

import torch
# 导入mindietorch
import mindietorch 

# 加载原始ts模型、构造输入数据
model_path = "./resnet50.ts"
model = torch.jit.load(model_path)

# 1. 构造输入
inputs = [mindietorch.Input((batchsize, 3, 224, 224))]

# 2. 编译优化
mindietorch.set_device(0)
compiled_model = mindietorch.compile(model, inputs=inputs, ir="ts") 

# 3.模型推理
results = compiled_model.forward(input_data.to("npu"))

# 4. 编译后模型保存加载 (可选)
compiled_module.save("CompiledModel.ts")

# 5. om离线模型导出(可选)
mindietorch.export_engine(model, "forward", "export_engine.om", inputs=inputs)

# 6. 资源释放
mindietorch.finalize()
相关文章
|
7月前
|
PyTorch 算法框架/工具
Jetson学习笔记(四):pth(torch模型文件)转trt(tensorrt引擎文件)实操
关于如何使用torch2trt工具将PyTorch模型转换为TensorRT引擎文件的实操指南。
333 1
Jetson学习笔记(四):pth(torch模型文件)转trt(tensorrt引擎文件)实操
|
机器学习/深度学习 PyTorch TensorFlow
NumPy与TensorFlow/PyTorch的集成实践
【4月更文挑战第17天】本文探讨了NumPy与主流深度学习框架TensorFlow和PyTorch的集成实践,阐述了它们如何通过便捷的数据转换提升开发效率和模型性能。在TensorFlow中,NumPy数组可轻松转为Tensor,反之亦然,便于原型设计和大规模训练。PyTorch的张量与NumPy数组在内存中共享,实现无缝转换。尽管集成带来了性能和内存管理的考量,但这种结合为机器学习流程提供了强大支持,促进了AI技术的发展。
|
机器学习/深度学习 PyTorch TensorFlow
【TensorFlow】TF介绍及代码实践
【4月更文挑战第1天】TF简介及代码示例学习
188 0
|
机器学习/深度学习 TensorFlow 区块链
TensorFlow 和 Keras 应用开发入门:1~4 全
TensorFlow 和 Keras 应用开发入门:1~4 全
242 0
|
数据采集 PyTorch 算法框架/工具
PyTorch应用实战四:基于PyTorch构建复杂应用
PyTorch应用实战四:基于PyTorch构建复杂应用
122 0
|
机器学习/深度学习 存储 人工智能
TensorFlow?PyTorch?Paddle?AI工具库生态之争:ONNX将一统天下
AI诸多工具库工具库之间的切换,是一件耗时耗力的麻烦事。ONNX 即应运而生,使不同人工智能框架(如PyTorch、TensorRT、MXNet)可以采用相同格式存储模
2328 1
TensorFlow?PyTorch?Paddle?AI工具库生态之争:ONNX将一统天下
|
机器学习/深度学习 分布式计算 自然语言处理
「技术选型」Keras、TensorFlow和PyTorch的区别
「技术选型」Keras、TensorFlow和PyTorch的区别
|
人工智能 TensorFlow 算法框架/工具
基于Tensorflow、Keras实现Stable Diffusion,开箱即用实现多GPU推理
基于Tensorflow、Keras实现Stable Diffusion,开箱即用实现多GPU推理
565 0
|
机器学习/深度学习 算法 PyTorch
PyTorch (1) | PyTorch的安装与简介
PyTorch (1) | PyTorch的安装与简介
210 0
PyTorch (1) | PyTorch的安装与简介
|
数据可视化 PyTorch 算法框架/工具
PyTorch学习笔记(七):PyTorch可视化
打印模型基础信息:使用print()函数,只能打印出基础构件的信息,不能显示每一层的shape和对应参数量的大小
235 0
PyTorch学习笔记(七):PyTorch可视化