全新GLM模型登场:9B/32B系列模型全面开源,性能媲美顶尖选手,MIT协议商用无忧!

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 智谱开源 32B/9B 系列 GLM 模型,涵盖基座、推理、沉思模型,均遵循 MIT 许可协议。该系列模型现已发布魔搭社区。其中,推理模型 GLM-Z1-32B-0414 性能媲美 DeepSeek-R1 等顶尖模型,实测推理速度可达 200 Tokens/秒。

模型介绍

智谱开源 32B/9B 系列 GLM 模型,涵盖基座、推理、沉思模型,均遵循 MIT 许可协议。该系列模型现已发布魔搭社区。其中,推理模型 GLM-Z1-32B-0414 性能媲美 DeepSeek-R1 等顶尖模型,实测推理速度可达 200 Tokens/秒。

模型链接:https://modelscope.cn/collections/GLM-4-0414-e4ecc89c179d4c

本次开源的所有模型均采用宽松的 MIT 许可协议。这意味着可以免费用于商业用途、自由分发,为开发者提供了极大的使用和开发自由度。开源了 9B 和 32B 两种尺寸的模型,包括基座模型、推理模型和沉思模型,具体信息如下:

image.png

模型链接:https://modelscope.cn/collections/GLM-4-0414-e4ecc89c179d4c

体验页面:https://modelscope.cn/studios/ZhipuAI/GLM-Z1-9B-0414 (小程序)

基座模型 GLM-4-32B-0414 拥有 320 亿参数,其性能可与国内、外参数量更大的主流模型相媲美。该模型利用 15T 高质量数据进行预训练,特别纳入了丰富的推理类合成数据,为后续的强化学习扩展奠定了基础。在后训练阶段,除了进行面向对话场景的人类偏好对齐,研究团队还通过拒绝采样和强化学习等技术,重点增强了模型在指令遵循、工程代码生成、函数调用等任务上的表现,以强化智能体任务所需的原子能力。

GLM-4-32B-0414 在工程代码、Artifacts 生成、函数调用、搜索问答及报告撰写等任务上均表现出色,部分 Benchmark 指标已接近甚至超越 GPT-4o、DeepSeek-V3-0324(671B)等更大模型的水平。

image.png

GLM-Z1-32B-0414 是一款具备深度思考能力的推理模型。该模型在 GLM-4-32B-0414 的基础上,采用了冷启动与扩展强化学习策略,并针对数学、代码、逻辑等关键任务进行了深度优化训练。与基础模型相比,GLM-Z1-32B-0414 的数理能力和复杂问题解决能力得到显著增强。此外,训练中整合了基于对战排序反馈的通用强化学习技术,有效提升了模型的通用能力。

在部分任务上,GLM-Z1-32B-0414 凭借 32B 参数,其性能已能与拥有 671B 参数的 DeepSeek-R1 相媲美。通过在 AIME 24/25、LiveCodeBench、GPQA 等基准测试中的评估,GLM-Z1-32B-0414 展现了较强的数理推理能力,能够支持解决更广泛复杂任务。

image.png

模型推理

transformers

源码安装

pip install git+https://github.com/huggingface/transformers.git

模型推理

from modelscope import AutoModelForCausalLM, AutoTokenizer
MODEL_PATH = "ZhipuAI/GLM-4-Z1-Rumination-32B-0414"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto")
message = [{"role": "user", "content": "Let a, b be positive real numbers such that ab = a + b + 3. Determine the range of possible values for a + b."}]
inputs = tokenizer.apply_chat_template(
    message,
    return_tensors="pt",
    add_generation_prompt=True,
    return_dict=True,
).to(model.device)
generate_kwargs = {
    "input_ids": inputs["input_ids"],
    "attention_mask": inputs["attention_mask"],
    "max_new_tokens": 128,
    "do_sample": False,
}
out = model.generate(**generate_kwargs)
print(tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True))

显存占用:

image.png

模型微调

ms-swift已经支持了GLM4-0414系列模型的微调。ms-swift是魔搭社区官方提供的大模型与多模态大模型训练部署框架。ms-swift开源地址:https://github.com/modelscope/ms-swift

我们将展示可运行的微调demo,并给出自定义数据集的格式。

在开始微调之前,请确保您的环境已准备妥当。

# pip install git+https://github.com/modelscope/ms-swift.git
git clone https://github.com/modelscope/ms-swift.git
cd ms-swift
pip install -e .

以GLM-4-9B-Chat-0414模型为例,使用文本数据集进行训练

CUDA_VISIBLE_DEVICES=0 \
swift sft \
    --model ZhipuAI/GLM-4-9B-Chat-0414 \
    --train_type lora \
    --dataset 'AI-ModelScope/alpaca-gpt4-data-zh#5000' \
              'AI-ModelScope/alpaca-gpt4-data-en#5000' \
    --torch_dtype bfloat16 \
    --num_train_epochs 1 \
    --per_device_train_batch_size 1 \
    --per_device_eval_batch_size 1 \
    --learning_rate 1e-4 \
    --lora_rank 8 \
    --lora_alpha 32 \
    --target_modules all-linear \
    --gradient_accumulation_steps 16 \
    --eval_steps 50 \
    --save_steps 50 \
    --save_total_limit 5 \
    --logging_steps 5 \
    --max_length 2048 \
    --output_dir output \
    --warmup_ratio 0.05 \
    --dataloader_num_workers 4

训练显存占用:

如果要使用自定义数据集进行训练,你可以参考以下格式,并指定`--dataset <dataset_path>`。

{"messages": [{"role": "user", "content": "浙江的省会在哪?"}, {"role": "assistant", "content": "浙江的省会在杭州。"}]}

训练完成后,使用以下命令对训练后的权重进行推理,这里的`--adapters`需要替换成训练生成的last checkpoint文件夹。

CUDA_VISIBLE_DEVICES=0 \
swift infer \
    --adapters output/vx-xxx/checkpoint-xxx \
    --stream false \
    --max_batch_size 1 \
    --load_data_args true \
    --max_new_tokens 2048

推送模型到ModelScope:

CUDA_VISIBLE_DEVICES=0 \
swift export \
    --adapters output/vx-xxx/checkpoint-xxx \
    --push_to_hub true \
    --hub_model_id '<your-model-id>' \
    --hub_token '<your-sdk-token>'
目录
相关文章
|
6月前
|
SQL 人工智能 Devops
MCP的蝴蝶效应:生产力还没实质提升的当下,与生产关系改变带来的大模型应用无限未来
从 LangChain 创始人Twitter激辩 MCP,到 Manus 项目火爆出圈,以及OpenAI & Google纷纷下场兼容MCP,这场由Anthropic发起的技术变革正引发全球科技圈的关注。作为国内首批接入MCP生态的企业级平台和开源社区,阿里云百炼与ModelScope社区深度拥抱MCP全套生态工具并提供大量深度应用实践,并收获到大家的热烈反馈。在各类宣传稿中,MCP似乎无所不能,那么它真的是技术上的万能灵药么?我们将从技术祛魅与生态重构的双重视角,和大家深度讨论下MCP的现状与对未来的展望。
424 1
|
5月前
|
数据可视化 API Swift
全模态图像模型Nexus-Gen对齐GPT-4o!同时搞定,数据、训练框架、模型全面开源
OpenAI GPT-4o发布强大图片生成能力后,业界对大模型生图能力的探索向全模态方向倾斜,训练全模态模型成研发重点。
289 17
|
6月前
|
机器学习/深度学习 人工智能 算法
超越 DeepSeek-R1!Seed-Thinking-v1.5:字节跳动开源MoE架构推理模型,200B总参数仅激活20B,推理效率提升5倍
字节跳动推出的200B参数混合专家模型,在AIME/Codeforces/GPQA等基准测试中实现多项突破,采用强化学习框架与流式推理系统,支持7大领域复杂推理任务。
356 13
超越 DeepSeek-R1!Seed-Thinking-v1.5:字节跳动开源MoE架构推理模型,200B总参数仅激活20B,推理效率提升5倍
|
6月前
|
机器学习/深度学习 人工智能 编解码
月之暗面开源16B轻量级多模态视觉语言模型!Kimi-VL:推理仅需激活2.8B,支持128K上下文与高分辨率输入
月之暗面开源的Kimi-VL采用混合专家架构,总参数量16B推理时仅激活2.8B,支持128K上下文窗口与高分辨率视觉输入,通过长链推理微调和强化学习实现复杂任务处理能力。
428 5
月之暗面开源16B轻量级多模态视觉语言模型!Kimi-VL:推理仅需激活2.8B,支持128K上下文与高分辨率输入
|
6月前
|
人工智能 自然语言处理 测试技术
能够双向推理的LLM!Dream-7B:港大联合华为开源的扩散推理模型,能够同时考虑前后文信息
Dream-7B是由香港大学与华为诺亚方舟实验室联合研发的开源扩散大语言模型,采用独特的掩码扩散范式,在文本生成、数学推理和代码编写等任务中展现出卓越性能。
297 3
能够双向推理的LLM!Dream-7B:港大联合华为开源的扩散推理模型,能够同时考虑前后文信息
|
6月前
|
存储 人工智能 JSON
传统OCR集体阵亡!Versatile-OCR-Program:开源多语言OCR工具,精准解析表格和数学公式等复杂结构
本文解析开源OCR工具Versatile-OCR-Program的技术实现,其基于多模态融合架构实现90%以上识别准确率,支持数学公式与图表的结构化输出,为教育资料数字化提供高效解决方案。
827 5
传统OCR集体阵亡!Versatile-OCR-Program:开源多语言OCR工具,精准解析表格和数学公式等复杂结构
|
5月前
|
人工智能 运维 Serverless
一键部署 Qwen3! 0 代码,2 种方式全新体验
Qwen3 正式发布并开源 8 款混合推理模型,包括两款 MoE 模型(Qwen3-235B-A22B 和 Qwen3-30B-A3B)及六个 Dense 模型。这些模型支持 119 种语言,在代码、数学等测试中表现优异,并提供思考与非思考两种模式。依托阿里云函数计算 FC 算力,FunctionAI 平台支持模型服务和应用模板部署,适用于多种场景。用户可通过 Serverless 架构快速构建高弹性、智能化应用,显著降低开发成本,提升效率。试用链接及详细文档已提供,欢迎体验。
|
6月前
|
机器学习/深度学习 人工智能 算法
HumanRig:高德地图提出在大规模数据集中学习人形角色的自动绑定技术,数据集开源!
HumanRig:高德地图提出在大规模数据集中学习人形角色的自动绑定技术,数据集开源!
395 88
|
5月前
|
机器学习/深度学习 算法 测试技术
DeepSeek-R1-0528:小更新大升级
今天,DeepSeek R1 开源发布了其“小版本”升级——DeepSeek-R1-0528。
565 24
|
6月前
|
机器学习/深度学习 编解码 人工智能
Kimi开源MoE架构多模态推理模型,小激活参数,大能量!
最近Moonshot AI推出了 Kimi-VL,这是一个高效的开源混合专家(MoE)视觉-语言模型(VLM),它提供了先进的多模态推理、长上下文理解以及强大的代理能力——所有这些功能都只需激活其语言解码器中的2.8B参数(Kimi-VL-A3B)。
368 1