热门 MCP Server一键部署

简介: 本文探讨了MCP(Model Context Protocol)的发展及其云上托管的趋势。尽管MCP协议在2024年发布时未引起广泛关注,但随着Cursor和Manus等平台的集成,以及OpenAI对其Agent SDK的支持,MCP逐渐成为行业标准。然而,本地部署的MCP Server存在效率低、扩展复杂等问题,难以满足企业级需求。函数计算(FC)作为Serverless算力的代表,提供一键托管开源MCP Server的能力,具备成本效益、弹性扩展、简化运维等优势,解决了传统托管的核心痛点。文章还提供了多个开源MCP Server的一键部署链接,助力开发者快速上手。

全球 AI 开发者们热议“MCP”(Model Context Protocol)。尽管这一协议在2024年由Anthropic发布时并未引起广泛关注,但2025年初,Cursor宣布集成MCP迅速将其带入开发者的视野,3月Manus的爆发更是加速了MCP的普及。而就在3月27日,OpenAI正式宣布其Agent SDK全面支持MCP协议,这一举措标志着MCP将会成为该领域的实施标准,必将重塑AI应用的开发与交互方式。


目前,社区的MCP Server大多采用本地STDIO模式部署,尽管这种模式能支持基本模型服务和工具的数据交互,简单测试尚可,但在涉及具体的开发,调试,由于IO重定向带来不同程度的开发复杂度;同时随着AI场景的日益丰富,一方面数据访问不再仅限于本地,另一方面业务对于架构可靠性要求,基于本地部署的 MCP Server 势必无法满足复杂的生产需求。因此,云上托管的MCP Server将成为未来的主流趋势。函数计算(FC)目前已支持一键托管开源的MCP Server,欢迎大家前来体验。


为什么云上托管 MCP Server 是趋势?

  • 吸引更多开发者参与MCP生态建设

MCP协议成为事实标准后,开发者无需为每个Function编写复杂的JSON Schema参数说明,这大大降低了重复开发的工作量。通过开源或第三方的MCP Server,开发者能够迅速共享和复用资源。例如,Blender-MCP项目允许用户通过MCP协议将自然语言指令转化为三维建模操作,项目开源一周便获得了5.4k stars。


  • SaaS服务商拥抱MCP Server

随着MCP的普及,SaaS服务商可以通过集成MCP Server触达新的市场和行业机会,而MCP协议的Stdio和SSE标准要求服务和数据供应商提供API访问,而云上托管将是最优选择。


  • 企业级 MCP Server 要求安全合规和弹性伸缩

MCP Server 将服务/数据对接给大模型,如果不限制大模型的数据权限范围和敏感数据过滤,将对企业产生安全合规风险,云上托管提供权限管控、操作审计、用户隐私保护等内置安全工具,大幅减少安全风险暴露面,合规成本低。同时 MCP Server 的爆火,对服务商是巨大的机会,服务商将面临着用户量和模型调用量的突增,云上托管如函数计算具备免运维、自动弹性、自动容灾的优势,确保服务体验的同时实现降本增效。

云上托管 MCP Server 核心痛点

  • 传统托管效率低

从 MCP 架构的描述中可以看到,MCP Server 作为 AI 大模型和企业服务的中间层,通过购买传统云资源部署效率低下,其代码通常相对轻量,开发者需要快速部署,快速测试仅仅可能是一条NPX命令。 "MCP Servers:  Lightweight programs that each expose specific capabilities through the standardized Model Context Protocol"。


  • 业务规模不确定

作为原有 Function Calling 的替代者,工具调用请求规模具有显著的不确定性,传统云资源托管需要长期持有资源,资源供给无法实现按业务流量进行灵活的动态适配。


  • 定制扩展流程复杂

MCP Server 作为AI和企业服务能力的中间层,其逻辑覆盖简单路由到复杂计算,随着业务场景的丰富会变得越发复杂,务必在选择云上托管的时候,也要考虑后续业务的开发和维护效率。 务必要求开发层面需要更灵活的定制能力,实现快速变更,快速上线,灵活的版本和流量管理。


  • 数据访问网络配置复杂

传统MCP Server依赖于本地化部署实现数据安全,随着云端部署的普遍化,云端 MCP Server 不仅需要能够实时安全的访问企业私有数据,也需要适配复杂的业务环境,在Internet和Intranet网络之间进行互通,这就要求能够快速的互联网公共服务和企业云上 VPC 快速打通,提供安全灵活的执行环境。


函数计算成为云上托管 MCP Server 的最简方式

社区积极的推动 MCP 协议演进,推动 Steamable HTTP transport 技术代替原有 HTTP+SSE 的通信方式,原有的 MCP 传输方式就像是你和客服通话时必须一直保持在线(SSE 需要长连接),而新的方式更像是你随时可以发消息,然后等回复(普通 HTTP 请求,但可以流式传输)。这种形式与 Serverless 算力无状态模式更加契合,协议层演进将更有利于云上Serverless算力的价值放大,随着AI模型复杂度和数据规模持续增长,Serverless与MCP Server的结合将成为趋势。


https://github.com/modelcontextprotocol/specification/pull/206


函数计算作为云上Serverless 算力的典型代表,其凭借在开发效率,按需付费,极致弹性等产品能力直击云上 MCP Server 托管的核心痛点,为企业MCP Server 提供高效,灵活,匹配业务规模的托管能力。


1. 成本效益最大化

  • 按需付费,避免资源浪费

Serverless按实际计算资源消耗计费,而非固定服务器租赁费用,尤其适合AI训练和推理任务中常见的波动性负载。

  • 消除闲置成本

AI模型训练通常需要突发性算力,Serverless能自动分配资源,避免传统模式下预留资源导致的服务器空置问题。


2. 弹性扩展与资源优化

  • 动态资源分配

将MCP Server 托管在函数计算上,基于Serverless架构,可实时响应AI任务需求,自动扩展CPU/GPU,确保算力高并发处理能力。

  • 多模型协作支持

支持多个AI项目并行运行,资源按优先级动态调度,提升整体算力利用率。


3. 简化运维与加速开发

  • 无服务器管理

开发者无需关注服务器配置、补丁更新或集群管理,专注算法优化和迭代MCP Server 内部逻辑和工具丰富度。

  • 开箱即用的工具链

函数计算提供了完善的工具链能力,基于开源 Serverless Devs开源工具实现本地快速部署。


4. 更灵活的MCP协议适配

  • 当前函数计算提供单实例多并发能力,扩展对存量SSE协议的适配,基于社区提供的MCP Proxy方案能够快速将存量本地MCP Server托管到云端,方便业务平台的测试开发。
  • 提供基于WebSocket 的MCP协议适配参考实现,支持单实例单并发和单实例多并发能力支持,提升协议适配和场景适配;同时团队紧跟社区 Streamable HTTP 方案,敬请期待!


体验:一键部署热门 MCP Server

依赖 Serverless 应用开发平台 CAP,我们能够快速实现开源 MCP Server 一键托管,假如您搭建的 AI Agent 中需要加入导航服务,您可能会需要高德社区提供的 MCP Server ,接下来我们将以开源项目 amap-maps-mcp-server 为例演示如何一键部署 MCP Server 到函数计算FC上。

第一步: 模版部署

点击 https://cap.console.aliyun.com/create-project?template=start-mcp-amap-maps 进入CAP控制台。填入从高德开发者申请的 Token(立刻申请完成),可以在这里申请(https://lbs.amap.com/api/webservice/create-project-and-key)。

第二步: 测试 MCP Server 提供的工具能力

部署成功之后,通过触发器页面,拿到测试URL可对当前MCP Server进行测试。如果希望将部署的MCP Server 用于生产,建议使用自定义域名代替测试URL。

测试步骤一:本地终端运行命令: npx @modelcontextprotocol/inspector

测试步骤二:浏览器中打开本地提供的测试地址“http://localhost:5173/#tools”进行测试,在URL表单中填入上面获取的URL,添加/sse 后缀填入URL表单中,点击Connect会看到开源 MCP Server提供的Tools列表,可以点击置顶Tool进行交互验证。

如果您对于产品有更多建议或者对 MCP server 云端托管有更多想法可以加入钉钉群(群号:64970014484)与我们取得联系。


更多开源 MCP Server一键部署

MCP 开源地址

编程语言

一键部署

Server 类型

https://github.com/baidu-maps/mcp/tree/main/src/baidu-map/node

Node

https://cap.console.aliyun.com/create-project?template=start-mcp-nodejs-baidu-map

mcp-proxy

https://github.com/modelcontextprotocol/servers/tree/main/src/github

Node

https://cap.console.aliyun.com/create-project?template=start-mcp-github

mcp-proxy

https://github.com/modelcontextprotocol/servers/tree/main/src/everart

Node

https://cap.console.aliyun.com/create-project?template=start-mcp-ever-art

mcp-proxy

https://github.com/modelcontextprotocol/servers/tree/main/src/fetch

Python

https://cap.console.aliyun.com/create-project?template=start-mcp-fetch

mcp-proxy

https://github.com/modelcontextprotocol/servers/tree/main/src/brave-search

Node

https://cap.console.aliyun.com/create-project?template=start-mcp-brave-search

mcp-proxy

https://github.com/modelcontextprotocol/servers/tree/main/src/time

Python

https://cap.console.aliyun.com/create-project?template=start-mcp-time

mcp-proxy

https://github.com/devsapp/amap-maps-mcp-server

Node

https://cap.console.aliyun.com/create-project?template=start-mcp-amap-maps

mcp-proxy

https://github.com/modelcontextprotocol/servers/tree/main/src/everything

Node

https://cap.console.aliyun.com/create-project?template=start-mcp-everything

sse

https://github.com/modelcontextprotocol/servers/tree/main/src/aws-kb-retrieval-server

Node

https://cap.console.aliyun.com/create-project?template=start-mcp-aws-kb-retrieval-server

mcp-proxy

https://github.com/modelcontextprotocol/servers/tree/main/src/gitlab

Node

https://cap.console.aliyun.com/create-project?template=start-mcp-gitlab

mcp-proxy

https://github.com/modelcontextprotocol/servers/tree/main/src/puppeteer

Node

https://cap.console.aliyun.com/template-detail?template=start-mcp-puppeteer

sse

https://github.com/modelcontextprotocol/servers/tree/main/src/sequentialthinking

Node

https://cap.console.aliyun.com/create-project?template=start-mcp-sequentialthinking

mcp-proxy



来源  |  阿里云开发者公众号

作者  |  世如

相关文章
|
8月前
|
人工智能 运维 安全
开源 Remote MCP Server 一站式托管来啦!
MCP Server 的实施存在着诸多挑战,特别是在认证授权、服务可靠性和可观测性方面,Higress 作为 AI 原生的 API 网关,提供了完整的开源 MCP Server 托管解决方案,实现存量 API 到 MCP 的协议转换。即将上线的 MCP 市场,将大幅降低开发者构建 MCP Server 的时间和人力成本。
1993 107
开源 Remote MCP Server 一站式托管来啦!
|
8月前
|
人工智能 API Go
MCP Server 牛刀小试之雷池 MCP
MCP(Model Context Protocol)是AI编程领域的热门话题,由Anthropic于2024年提出。它是一种标准化协议,用于AI模型与本地/远程资源交互,类似USB-C接口,支持多种数据源和工具连接。本文以雷池WAF为例,介绍如何通过MCP协议创建服务器,实现AI自动化管理。项目使用Golang SDK开发,功能包括创建受保护应用、获取证书及攻击事件统计等。视频演示展示了如何查询近一个月的拦截事件和WAF证书配置。尽管开发工作量较大,但MCP使LLM与工具解耦,提升智能化水平。扩展资料包含中文文档和示例指南。
666 13
MCP Server 牛刀小试之雷池 MCP
|
8月前
|
人工智能 JSON API
0代码将存量 API 适配 MCP 协议
本文主要讲述通过 Nacos+Higress 的方案实现0代码改造将 Agent 连接到存量应用,能够显著降低存量应用的改造成本。
1044 44
0代码将存量 API 适配 MCP 协议
|
8月前
|
Serverless Python
借助 serverless 将 MCP 服务部署到云端
本文介绍了如何将 MCP 服务通过 SSE 协议部署到云端,避免本地下载和启动的麻烦。首先,使用 Python 实现了一个基于 FastMCP 的网络搜索工具,并通过设置 `transport='sse'` 启用 SSE 协议。接着,编写客户端代码测试服务功能,确保其正常运行。随后,利用阿里云函数计算服务(FC 3.0)以 Serverless 方式部署该服务,包括创建函数、配置环境变量、添加依赖层以及部署代码。最后,提供了客户端测试方法和日志排查技巧,并展示了如何在不同工具(如 Cherry-Studio、Cline 和 Cursor)中配置云端 MCP 服务。
1322 10
借助 serverless 将 MCP 服务部署到云端
|
8月前
|
人工智能 弹性计算 运维
阿里云 MCP Server 开箱即用!
本文介绍了如何通过alibaba-cloud-ops-mcp-server和MCP(Model Context Protocol)实现AI助手对阿里云资源的复杂任务操作。内容涵盖背景、准备步骤(如使用VS Code与Cline配置MCP Server)、示例场景(包括创建实例、监控实例、运行命令、启停实例等),以及支持的工具列表和参考文档。借助这些工具,用户可通过自然语言与AI助手交互,完成ECS实例管理、VPC查询、云监控数据获取等运维任务,实现高效“掌上运维”。
|
8月前
|
人工智能 JavaScript Serverless
从零开始开发 MCP Server
本文介绍如何使用Serverless Devs CLI工具从零开发并一键部署MCP Server到阿里云函数计算(FC)。首先通过初始化MCP Server项目,完成本地代码编写,利用Node.js实现一个简单的Hello World工具。接着对代码进行打包,并通过Serverless Devs工具将项目部署至云端。部署完成后,提供三种客户端接入方式:官方Client、其他本地Client及在FC上部署的Client。最后可通过内置大模型的inspector测试部署效果。Serverless Devs简化了开发流程,提升了MCP Server的构建效率。
1463 119
|
7月前
|
人工智能 安全 应用服务中间件
阿里巴巴 MCP 分布式落地实践:快速转换 HSF 到 MCP server
本文分享了阿里巴巴内部将大规模HSF服务快速转换为MCP Server的实践经验,通过Higress网关实现MCP协议卸载,无需修改代码即可接入MCP生态。文章分析了MCP生态面临的挑战,如协议快速迭代和SDK不稳定性,并详细介绍了操作步骤及组件功能。强调MCP虽非终极解决方案,但作为AI业务工程化的起点具有重要意义。最后总结指出,MCP只是AI原生应用发展的第一步,未来还有更多可能性值得探索。
1177 48
|
7月前
|
人工智能 缓存 Serverless
MCP Server 实践之旅第 3 站:MCP 协议亲和性的技术解析
本文将以 MCP Server 在函数计算平台的深度集成为研究载体,解构基于 SSE 长连接通信模型,剖析会话亲和、优雅升级等关键技术,揭示 Serverless 架构在 MCP 场景中的亲和性创新实践。
631 13
|
8月前
|
SQL 人工智能 安全
MCP 的 AI 好搭档
本文介绍了MCP(模型上下文协议)及其在AI领域的应用前景。MCP由Anthropic公司推出,通过标准化通信协议实现AI与数据源间的安全隔离,解决了传统AI应用中的数据隐私和安全问题。文章探讨了从LLM到MCP的进化过程,并分析了其面临的挑战,如算力不足和开放性需求。Serverless技术被提出作为解决这些问题的方案,提供弹性算力和支持安全沙箱环境。最后,文章提供了如何一键部署热门MCP Server的教程,帮助开发者快速上手并体验该协议的实际应用效果。
743 111
|
8月前
|
人工智能 数据可视化 数据挖掘
手撕“开源版Manus”
Manus作为一款引发热议的AI智能体产品吸引了大量的关注。OpenManus作为一个开源项目,尝试复现了Manus的部分功能,可以作为一种“平替”来体验类似的技术。