CALIPSO IIR Lidar Level 3 Global Energy and Water Cycle Experiment (GEWEX) Cloud, Standard V1-00
简介
CAL_IIR_L3_GEWEX_Cloud-Standard-V1-00 是云-气溶胶激光雷达和红外探路者卫星观测 (CALIPSO) IIRLevel 3 全球能量和水循环实验 (GEWEX) 云,标准版本 1-00 数据产品。该产品的数据是使用 CALIPSO 成像红外辐射计 (IIR) 仪器收集的。
该产品报告了均匀二维 (2D) 空间网格上 IIR 云有效半径和水路径平均值及直方图的全球分布。该产品的设计遵循 GEWEX 云评估的一般指导。云量、辐射温度、有效发射率和光学深度表征了报告 IIR 微物理检索的云样本。报告了冰云、液态水云和层压低于 440 hPa 的高冰云的云属性。所有 3 级参数均来自 IIR 版本 4 2 级轨道产品,时间平均值为一个月。
CALIPSO 于 2006 年 4 月 28 日发射,旨在研究云层和气溶胶对地球辐射收支和气候的影响。它位于国际 A-Train 星座中,用于同步地球观测。CALIPSO 卫星由三种仪器组成:CALIOP、成像红外辐射计 (IIR) 和广角相机 (WFC)。CALIPSO 是美国宇航局和法国国家空间研究中心的联合卫星任务。
摘要
Additional Metadata
Resource Type Dataset
Metadata Created Date December 1, 2022
Metadata Updated Date December 6, 2023
Publisher NASA/LARC/SD/ASDC
Maintainer
DAVID WINKER
Identifier C2136445377-LARC_ASDC
Data First Published 2021-07-21
Language en-US
Data Last Modified 2021-07-21
Category CALIPSO, geospatial
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Citation Archived by National Aeronautics and Space Administration, U.S. Government, NASA/LARC/SD/ASDC. https://doi.org/10.5067/CALIOP/CALIPSO/CAL_IIR_L3_GEWEX_Cloud-Standard-V1-00.
Harvest Object Id 605f5560-7f0b-46bb-b4f1-6faf05b982b9
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://doi.org/10.5067/CALIOP/CALIPSO/CAL_IIR_L3_GEWEX_Cloud-Standard-V1-00
Metadata Type geospatial
Old Spatial <?xml version="1.0" encoding="UTF-8"?>-90.0 -180.0 -90.0 180.0 90.0 180.0 90.0 -180.0 -90.0 -180.0
Program Code 026:001
Source Datajson Identifier True
Source Hash 469bb8f0651b3bca40c9cd681196d34f3833159e134be57ed8db220692c5e9b2
Source Schema Version 1.1
Spatial
Temporal 2006-06-01T00:00:00Z/2017-01-01T23:59:59.999Z
编辑
代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
import pandas as pd
import leafmap
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
leafmap.nasa_data_login()
results, gdf = leafmap.nasa_data_search(
short_name="ABoVE_ASCENDS_XCO2_2050",
cloud_hosted=True,
bounding_box=(-180.0, -90.0, 180.0, 90.0),
temporal=("2006-06-01", "2016-12-31"),
count=-1, # use -1 to return all datasets
return_gdf=True,
)
gdf.explore()
leafmap.nasa_data_download(results[:5], out_dir="data")
引用
Archived by National Aeronautics and Space Administration, U.S. Government, NASA/LARC/SD/ASDC.
网址推荐
知识星球
知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)https://wx.zsxq.com/group/48888525452428
机器学习
干旱监测平台
慧天干旱监测与预警-首页https://www.htdrought.com/