esProc SPL vs DuckDB:多源数据处理谁更胜一筹?

简介: DuckDB 和 esProc SPL 均支持多数据源处理,但在功能和灵活性上存在差异。DuckDB 支持常见文件格式(如 CSV、Parquet)、云存储及部分关系型数据库,依赖专用连接器,扩展性有限;esProc 数据源支持更广泛,涵盖多种本地文件、数据库(关系型与 NoSQL)、云存储及远程数据源,使用 Native 接口封装,扩展简便,适合多数据源混合计算。在数据处理方面,DuckDB 对 CSV 和 Parquet 文件支持成熟,复杂计算需借助 Python,存在体系割裂;esProc 提供 双语法,尤其 SPL 在复杂计算和 JSON 多层结构处理上表现更直观高效。

DuckDB 和 esProc SPL 都支持多样数据源处理,这里比较一下两者的差异。

支持的数据源种类

DuckDB 支持的数据源类型覆盖了常见的文件格式(如 CSV、Parquet、JSON、Excel)、云存储(如 AWS S3、Azure Blob Storage)以及关系型数据库(如 MySQL、PostgreSQL、SQLite),也可以通过 httpfs 访问 web 数据。此外,DuckDB 还支持一些新兴的数据湖格式(如 Delta Lake、Iceberg)。

esProc 支持的数据源类型更丰富,涵盖了更多的本地文件、数据库和远程数据源。以下是 SPL 支持的一些数据源:

本地文件:CSV、Excel、JSON、XML、Parquet、ORC 等

所有关系型数据库:MySQL、PostgreSQL、Oracle、SQL Server 等(通过 JDBC)

NoSQL 数据库:MongoDB、Cassandra、Redis 等

云存储:HDFS、AWS S3、GCS 等

远程数据源:RESTful API、WebService、FTP/SFTP 等

其他:Kafka、ElasticSearch 等

从表面的数量上看,esProc 支持的数据源种类更多,尤其是在非关系型数据库(如 MongoDB、Redis)和 Kafka、ES 等支持方面,esProc 优势明显。

从更深层看,DuckDB 的数据源接入依赖专用连接器(Connector),要针对每种数据源单独开发,复杂度很高,用户自行基于开源代码再开发的难度也很大。结果就是可用 Connector 数量明显不多,连最常见的关系数据库也支持的不足,目前能支持 MySQL、PG、SQLite 而不支持 Oracle、MSSQL 等其他常见数据库,这会导致常见的多数据源混合查询困难。比如要做 MySQL 和 Oracle 的混合计算,在没有合适 Connector 时,就只能通过 Python 曲线救国。

esProc 使用数据源 Native 接口,所有关系库都可以用 JDBC 连接,能天然支持,而其他诸如 MongoDB、Kafka 等数据源也都是基于 Native 接口做简单封装即可,开发速度很高,因而提供了更丰富的 Connetor 库。用户自己扩展也不难,可以通过预留的扩展接口实现。

有了这些丰富的支持和数据源扩展能力,使用 esProc 完成多数据源混合计算就非常容易了,MySQL+Oracle 直接算就可以,有不支持的数据源扩展起来也简单。

DuckDB 的专用 Connector 和 esProc 使用 Native 接口简单封装没有好坏之分,前者可以做更深层次的支持和优化,可以做到一定程度的透明化;后者则更加灵活,支持的数据源丰富且扩展灵活,具体倾向于哪个就取决于实际需要了。

数据类型处理

DuckDB 对 CSV 和 Parquet 文件的支持非常成熟,能够高效读取和查询这些文件。例如,DuckDB 可以直接加载 CSV 文件并进行 SQL 查询,操作简单直接:

SELECT * FROM 'data.csv' WHERE column_a > 100;

esProc 用 SPL 语法处理 CSV 文件也简单:

T("data.csv").select(column_a > 100)

除了 SPL 语法,esProc 也同时提供了 SQL 语法:

$SELECT * FROM data.csv WHERE column_a > 100;

简单情况用 SQL 查,复杂情况用 SPL,二者还可以混用。

由于 SQL 语言的限制,很多复杂计算并不好实现,DuckDB 与 Python 做了很好集成,可以通过 Python 辅助实现复杂需求,但两个体系编写调试都不一样,会产生很强的割裂感。esProc 提供 SQL 和更强大的 SPL,SQL 搞不定的运算用 SPL 就都能实现了,通常还更简单,一个体系内完成整体性更强一些。

另外一个比较大的差异在 JSON 处理上,esProc 能更好应对复杂计算以及需要保持 JSON 层次结构的场景。完成多层结构计算时,SPL 可以直接用点(.)取子层级数据,很直观,不需要像 DuckDB 依靠 UNNEST 逐层展开或者嵌套查询来保持数据结构的完整性,多层数据计算支持的非常彻底。

SPL 多层多条件数据过滤:

json(file("orders.json").read()). select(order_details.product.category=="Electronics" && order_details.sum(price*quantity)>200)

相比 DuckDB,esProc 的数据源支持更加丰富,扩展起来也容易,可以完成绝大部分数据源间的混合计算。数据处理上,esProc 除了 SQL 语法还有 SPL,能应对更多复杂情况,一个体系就能搞定,不存在 SQL 和 Python 两个体系的割裂,尤其对 JSON 类多层数据的处理,SPL 更简单直观。

相关文章
|
5月前
|
SQL 监控 关系型数据库
一键开启百倍加速!RDS DuckDB 黑科技让SQL查询速度最高提升200倍
RDS MySQL DuckDB分析实例结合事务处理与实时分析能力,显著提升SQL查询性能,最高可达200倍,兼容MySQL语法,无需额外学习成本。
|
传感器 存储 算法
Python OpenCV 蓝图:1~5
Python OpenCV 蓝图:1~5
556 0
|
移动开发 API PHP
分享101个PHP源码,总有一款适合您
分享101个PHP源码,总有一款适合您
338 1
|
2月前
|
SQL 分布式计算 架构师
数据湖不是湖,是江湖:Delta Lake / Iceberg / Hudi 到底该选谁?
数据湖不是湖,是江湖:Delta Lake / Iceberg / Hudi 到底该选谁?
207 2
|
4月前
|
缓存 Linux iOS开发
BleachBit系统清理工具软件下载安装教程!免费开源,清理垃圾文件,大幅提升电脑性能!
BleachBit是一款免费开源的系统清理工具,支持Windows、macOS和Linux,可深度清除垃圾文件、浏览器缓存及隐私数据,提升电脑性能与安全性。操作简单,功能强大,适合各类用户。
578 1
|
SQL 存储 缓存
Hadoop-Impala优化十大指导原则和最佳实践(二)
简介: 以下是性能准则和最佳做法。您可以使用在规划过程中实验,和hadoop集群一起进行impala的性能调整。所有这些信息也可在文档的其他地方更详细的impala文档;以下是优化的方法措施,强调优化调优技术提供最高的投资回报
1931 0
|
3月前
|
人工智能 自然语言处理 算法
开发者视角的最新视频营销软件工具观察:关于算法合规、自动化工作流与商业场景适配的分析
当前, 短视频内容创作工具的发展路径呈现出明确的“AI+移动原生”倾向,旨在将复杂的视频生产全链路浓缩于手机端和加入自动化AI功能。这极大地降低了技术门槛与时间成本,以适应短视频营销高频、快反的本质需求。与此同时,合规性已成为企业级应用不可逾越的底线。采用能理解本土商业语境的文化算法,以及完成国家要求的大模型备案,是构建信任的关键。这确保了生成内容在法律层面的安全性,为企业规避了数据与版权纠纷风险,提供了长期运营的“安全护城河”。 更重要的是,新一代工具正从执行单点命令的“辅助工具”,进化为能理解商业意图并自主完成复杂任务的Agent。它能自动接管从需求解析、脚本生成到多模态素材合成的全流程
180 5
|
前端开发 JavaScript Go
|
机器学习/深度学习 数据采集 自然语言处理
[python][whl]python模块triton的whl文件下载地址汇总(1)
[python][whl]python模块triton的whl文件下载地址汇总(1)
|
开发工具 数据库 git
通俗易懂!看漫画学Python入门教程(全彩版)Git首发破万Star
很多编程语言书读起来都略显晦涩,让不少读者望而却步,很难坚持读完。关老师的新书另辟蹊径,以漫画形式切入,生动有趣,把复杂的技术点和编程知识讲解得通俗易懂真正体现了一图胜干言的道理。而且每章结束时都有“练一练”环节,能够帮助读者夯实基础、锻炼技能。不得不说,这是一本Python入门和进阶佳作。