又又又上新啦!魔搭免费模型推理API支持DeepSeek-R1,Qwen2.5-VL,Flux.1 dev及Lora等

简介: 通过API接口进行标准化,能让开源模型以更加轻量和迅速的方式被开发者使用起来,并集成到不同的AI应用中。魔搭通过API-Inference,支持广大开发者无需本地的GPU和环境设置,就能轻松的依托不同开源模型的能力,展开富有创造力的尝试,与工具结合调用,来构建多种多样的AI应用原型。

01.引言

通过API接口进行标准化,能让开源模型以更加轻量和迅速的方式被开发者使用起来,并集成到不同的AI应用中。魔搭通过API-Inference,支持广大开发者无需本地的GPU和环境设置,就能轻松的依托不同开源模型的能力,展开富有创造力的尝试,与工具结合调用,来构建多种多样的AI应用原型。

历史文章:开发者福利,魔搭推出免费模型推理API,注册就送每日2000次调用!

魔搭社区现在已经支持了近3000个模型的推理API 欢迎使用!

当前魔搭免费模型推理API-Inference已经覆盖了包括大语言模型(包括R1等推理模型),多模态模型,文生图等多个领域:

模型类型

典型模型

大语言模型(Reasoning)

deepseek-ai/DeepSeek-R1, Qwen/QwQ-32B-Preview

多模态理解模型

Qwen/Qwen2.5-VL-72B-Instruct

文生图(基础模型)

MAILAND/majicflus_v1

文生图(lora)

ChaosMY/MYkawaii4MJ

02.最佳实践

对于支持API-Inference的模型,在页面右侧就可以直接看到范例API调用代码:

以各个模态的典型模型为例:

  • 大语言模型(以DeepSeek-R1 Reasoning模型为例)
from openai import OpenAI
client = OpenAI(
    base_url='https://api-inference.modelscope.cn/v1/',
    api_key='Your_SDK_Token', # ModelScope Token
)
response = client.chat.completions.create(
    model='deepseek-ai/DeepSeek-R1', # ModelScope Model-Id
    messages=[
        {
            'role': 'system',
            'content': 'You are a helpful assistant.'
        },
        {
            'role': 'user',
            'content': '你好'
        }
    ],
    stream=True
)
reasoning_content = ''
answer_content = ''
done_reasoning = False
for chunk in response:
    # for reaonsing model, output may include both reasoning_content and content
    reasoning_chunk = chunk.choices[0].delta.reasoning_content
    answer_chunk = chunk.choices[0].delta.content
    if reasoning_chunk != '':
        print(reasoning_chunk, end='',flush=True)
    elif answer_chunk != '':
        if not done_reasoning:
            print("\n\n === Final Answer ===\n")
            done_reasoning = True
        print(answer_chunk, end='',flush=True)
好的,用户用中文打招呼“你好”,我需要回应。首先,确定用户的需求是什么。可能只是简单的问候,或者有后续问题。考虑到用户之前可能切换了语言,现在用中文,可能需要中文回答。我应该保持友好,询问有什么可以帮助的,同时保持简洁。避免使用复杂的句子,让用户感到轻松。另外,检查是否有拼写错误,确保回应自然。最后,确保符合OpenAI的内容政策,不涉及敏感话题。准备好回应后,发送即可。
 === Final Answer ===
你好!很高兴见到你,有什么我可以帮忙的吗?
  • 多模态理解模型
from openai import OpenAI
client = OpenAI(
    base_url='https://api-inference.modelscope.cn/v1/',
    api_key='Your_SDK_Token', # ModelScope Token
)
response = client.chat.completions.create(
    model='Qwen/Qwen2.5-VL-72B-Instruct', # ModelScope Model-Id
    messages=[{
        'role':
            'user',
        'content': [{
            'type': 'text',
            'text': '描述这幅图',
        }, {
            'type': 'image_url',
            'image_url': {
                'url':
                    'https://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/audrey_hepburn.jpg',
            },
        }],
    }],
    stream=True
)
for chunk in response:
    print(chunk.choices[0].delta.content, end='', flush=True)
这是一张黑白照片,展示了一位女性在厨房里蹲着打开烤箱门的场景。她穿着一件带有花纹的吊带连衣裙,头发梳成一个整齐的发型。她的表情专注,似乎在检查烤箱内部的东西。厨房的橱柜和烤箱都是白色的,背景中可以看到一些厨房用具和装饰品。整体氛围显得非常生活化和自然。

文生图模型(基础模型)

import requests
import json
from PIL import Image
from io import BytesIO
url = 'https://api-inference.modelscope.cn/v1/images/generations'
payload = {
    'model': 'MAILAND/majicflus_v1',#ModelScope Model-Id,required
    'prompt': 'a cute girl in festive chinese new year clothing'# required
}
headers = {
    'Authorization': 'Bearer Your_SDK_Token',
    'Content-Type': 'application/json'
}
response = requests.post(url, data=json.dumps(payload, ensure_ascii=False).encode('utf-8'), headers=headers)
response_data = response.json()
image = Image.open(BytesIO(requests.get(response_data['images'][0]['url']).content))
image.save('result_image.jpg')

  • 文生图模型(lora)
import requests
import json
from PIL import Image
from io import BytesIO
url = 'https://api-inference.modelscope.cn/v1/images/generations'
payload = {
    'model': 'ChaosMY/MYkawaii4MJ',#ModelScope Model-Id,required
    'prompt': 'a cute black cat and a beautiful girl with long black hair and glasses'# required
}
headers = {
    'Authorization': 'Bearer Your_SDK_Token',
    'Content-Type': 'application/json'
}
response = requests.post(url, data=json.dumps(payload, ensure_ascii=False).encode('utf-8'), headers=headers)
response_data = response.json()
image = Image.open(BytesIO(requests.get(response_data['images'][0]['url']).content))
image.save('result_image.jpg')

各位开发者小伙伴有希望尽快支持的开源模型,欢迎在留言区积极留言模型id,点赞排名靠前的开源模型,我们将会优先支持。

点击链接,即可跳转API-Inference页面~

ModelScope - 模型列表页

目录
相关文章
|
1月前
|
JSON 数据可视化 API
Python 中调用 DeepSeek-R1 API的方法介绍,图文教程
本教程详细介绍了如何使用 Python 调用 DeepSeek 的 R1 大模型 API,适合编程新手。首先登录 DeepSeek 控制台获取 API Key,安装 Python 和 requests 库后,编写基础调用代码并运行。文末包含常见问题解答和更简单的可视化调用方法,建议收藏备用。 原文链接:[如何使用 Python 调用 DeepSeek-R1 API?](https://apifox.com/apiskills/how-to-call-the-deepseek-r1-api-using-python/)
|
1月前
|
人工智能 自然语言处理 Shell
深度评测 | 仅用3分钟,百炼调用满血版 Deepseek-r1 API,百万Token免费用,简直不要太爽。
仅用3分钟,百炼调用满血版Deepseek-r1 API,享受百万免费Token。阿里云提供零门槛、快速部署的解决方案,支持云控制台和Cloud Shell两种方式,操作简便。Deepseek-r1满血版在推理能力上表现出色,尤其擅长数学、代码和自然语言处理任务,使用过程中无卡顿,体验丝滑。结合Chatbox工具,用户可轻松掌控模型,提升工作效率。阿里云大模型服务平台百炼不仅速度快,还确保数据安全,值得信赖。
358089 67
深度评测 | 仅用3分钟,百炼调用满血版 Deepseek-r1 API,百万Token免费用,简直不要太爽。
|
1月前
|
人工智能 API 开发工具
【重磅发布】 免费领取阿里云百炼AI大模型100万Tokens教程出炉,API接口实战操作,DeepSeek-R1满血版即刻体验!
阿里云百炼是一站式大模型开发及应用构建平台,支持开发者和业务人员轻松设计、构建大模型应用。通过简单操作,用户可在5分钟内开发出大模型应用或在几小时内训练专属模型,专注于创新。
614 89
【重磅发布】 免费领取阿里云百炼AI大模型100万Tokens教程出炉,API接口实战操作,DeepSeek-R1满血版即刻体验!
|
20天前
|
人工智能 自然语言处理 API
零门槛,即刻拥有DeepSeek-R1满血版——调用API及部署各尺寸模型
本文介绍了如何利用阿里云技术快速部署和使用DeepSeek系列模型,涵盖满血版API调用和云端部署两种方案。DeepSeek在数学、代码和自然语言处理等复杂任务中表现出色,支持私有化部署和企业级加密,确保数据安全。通过详细的步骤和代码示例,帮助开发者轻松上手,提升工作效率和模型性能。解决方案链接:[阿里云DeepSeek方案](https://www.aliyun.com/solution/tech-solution/deepseek-r1-for-platforms?utm_content=g_1000401616)。
零门槛,即刻拥有DeepSeek-R1满血版——调用API及部署各尺寸模型
|
16天前
|
机器人 API
零门槛,即刻拥有DeepSeek-R1满血版(阿里云百炼-API)
本文介绍如何使用阿里云百炼部署的满血版DeepSeek-R1进行API调用。通过获取API Key并使用简单代码,可快速体验DeepSeek的强大功能。具体步骤包括获取API Key、编写调用代码及查看返回结果。链接:[解决方案](https://blog.csdn.net/qwe1110/article/details/146020743) 和 [API文档](https://help.aliyun.com/zh/model-studio/developer-reference/deepseek)。
172 17
|
19天前
|
人工智能 物联网 API
又又又上新啦!魔搭免费模型推理API支持DeepSeek-R1,Qwen2.5-VL,Flux.1 dev及Lora等
又又又上新啦!魔搭免费模型推理API支持DeepSeek-R1,Qwen2.5-VL,Flux.1 dev及Lora等
|
1月前
|
存储 人工智能 安全
如何调用 DeepSeek-R1 API ?图文教程
首先登录 DeepSeek 开放平台,创建并保存 API Key。接着,在 Apifox 中设置环境变量,导入 DeepSeek 提供的 cURL 并配置 Authorization 为 `Bearer {{API_KEY}}`。通过切换至正式环境发送请求,可实现对话功能,支持流式或整体输出。
1984 15
|
3月前
|
人工智能 API 语音技术
开发者福利,魔搭推出免费模型推理API,注册就送每日2000次调用!
今天,魔搭社区开放了免费的开源模型推理API,仅需使用魔搭的SDK Token,就可以通过简单的API请求探索各种强大的开源模型的使用。
225 9
|
6月前
|
人工智能 Serverless API
一键服务化:从魔搭开源模型到OpenAI API服务
在多样化大模型的背后,OpenAI得益于在领域的先发优势,其API接口今天也成为了业界的一个事实标准。
一键服务化:从魔搭开源模型到OpenAI API服务
|
1月前
|
JSON 前端开发 API
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
68 5
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡

热门文章

最新文章