RT-DETR改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题

简介: RT-DETR改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题

一、本文介绍

本文记录的是改进RT-DETR的损失函数,将其替换成Slide Loss,并详细说明了优化原因,注意事项等。Slide Loss函数可以有效地解决样本不平衡问题,为困难样本赋予更高的权重,使模型在训练过程中更加关注困难样本。若是在自己的数据集中发现容易样本的数量非常大,而困难样本相对稀疏,可尝试使用Slide Loss来提高模型在处理复杂样本时的性能。


专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、Slide Loss原理

2.1 IoU含义

IoU(P, G) = area(P∩G) / area(G),其中P是预测框,G是真实框(ground truth)。IoU的值在[0, 1]之间。

IoU是预测框与真实框的交集面积与并集面积之比。它用于衡量预测框与真实框的重合程度。

2.2 原理

  1. 样本分类依据
    • Slide Loss函数基于预测框和真实框的IoU大小来区分容易样本和困难样本。
    • 为了减少超参数,将所有边界框的IoU值的平均值作为阈值µ,小于µ的被视为负样本,大于µ的为正样本。
  2. 强调边界样本
    • 但处于边界附近的样本由于分类不明确,往往会遭受较大损失。为了解决这个问题,希望模型能够学习优化这些样本,并更充分地利用这些样本训练网络。
    • 首先将样本通过参数µ分为正样本和负样本,然后通过一个加权函数Slide来强调处于边界的样本。
    • Slide加权函数表达式为:
      $$f(x)= \begin{cases} 1&x\leq\mu - 0.1\\ e^{1-\mu}&\mu < x <\mu - 0.1\\ e^{1 - x}&x\geq u \end{cases} $$

在这里插入图片描述

2.2 优势

  1. 解决样本不平衡问题
    • 在大多数情况下,容易样本的数量非常大,而困难样本相对稀疏,Slide Loss函数可以有效地解决样本不平衡问题,使模型在训练过程中更加关注困难样本。
  2. 自适应学习阈值
    • 通过自动计算所有边界框的IoU值的平均值作为阈值µ,减少了人为设置超参数的难度,提高了模型的适应性。
  3. 提高模型性能
    • 根据论文实验结果,Slide函数在中等难度和困难子集上提高了模型的性能,使模型能够更好地学习困难样本的特征,提高了模型的泛化能力。

论文:https://arxiv.org/pdf/2208.02019
源码:https://github.com/Krasjet-Yu/YOLO-FaceV2/blob/d9c8f24d5dba392ef9d6b350a7c50b850051b32b/utils/loss.py#L16


三、实现代码及RT-DETR修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/143740633

目录
相关文章
|
8月前
|
机器学习/深度学习
RT-DETR改进策略【损失函数篇】| 替换激活函数为Mish、PReLU、Hardswish、LeakyReLU、ReLU6
RT-DETR改进策略【损失函数篇】| 替换激活函数为Mish、PReLU、Hardswish、LeakyReLU、ReLU6
338 2
RT-DETR改进策略【损失函数篇】| 替换激活函数为Mish、PReLU、Hardswish、LeakyReLU、ReLU6
|
8月前
RT-DETR改进策略【损失函数篇】| 通过辅助边界框计算IoU提升检测效果(Inner_GIoU、Inner_DIoU、Inner_CIoU、Inner_EIoU、Inner_SIoU)
RT-DETR改进策略【损失函数篇】| 通过辅助边界框计算IoU提升检测效果(Inner_GIoU、Inner_DIoU、Inner_CIoU、Inner_EIoU、Inner_SIoU)
365 0
RT-DETR改进策略【损失函数篇】| 通过辅助边界框计算IoU提升检测效果(Inner_GIoU、Inner_DIoU、Inner_CIoU、Inner_EIoU、Inner_SIoU)
|
8月前
|
人工智能 计算机视觉
RT-DETR改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
RT-DETR改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
576 5
RT-DETR改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
|
8月前
|
机器学习/深度学习 资源调度 数据可视化
RT-DETR改进策略【损失函数篇】| 将激活函数替换为带有注意力机制的激活函数 ARelu
RT-DETR改进策略【损失函数篇】| 将激活函数替换为带有注意力机制的激活函数 ARelu
152 2
RT-DETR改进策略【损失函数篇】| 将激活函数替换为带有注意力机制的激活函数 ARelu
|
8月前
|
机器学习/深度学习 编解码 TensorFlow
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
401 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
8月前
|
机器学习/深度学习 编解码 数据可视化
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
475 11
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
|
8月前
|
人工智能
RT-DETR改进策略【损失函数篇】| 2024 引进Focaler-IoU损失函数 加强边界框回归 (Focaler-DIoU、Focaler-GIoU、Focaler-CIoU)
RT-DETR改进策略【损失函数篇】| 2024 引进Focaler-IoU损失函数 加强边界框回归 (Focaler-DIoU、Focaler-GIoU、Focaler-CIoU)
197 1
|
8月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制
RT-DETR改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制
549 10
RT-DETR改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制
|
8月前
|
计算机视觉
RT-DETR改进策略【损失函数篇】| 利用MPDIoU,加强边界框回归的准确性
RT-DETR改进策略【损失函数篇】| 利用MPDIoU,加强边界框回归的准确性
254 2
|
8月前
|
机器学习/深度学习 计算机视觉 网络架构
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
555 12
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题