RT-DETR改进入门篇 | 手把手讲解改进模块如何实现高效涨点,以SimAM注意力模块为例

简介: RT-DETR改进入门篇 | 手把手讲解改进模块如何实现高效涨点,以SimAM注意力模块为例

一、本文介绍

本文记录的是基于SimAM注意力模块的RT-DETR目标检测方法研究SimAM注意力模块通过优化能量函数来获得每个神经元的三维权重,而==无需引入额外的参数==或增加计算复杂度。若是有轻量化需求的小伙伴,无参的注意力模块也许是一个不错的选择。


专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、SimAM注意力原理

SimAM(A Simple, Parameter-Free Attention Module for Convolutional Neural Networks)是一种简单且无参数的注意力模块,主要用于卷积神经网络。

2.1、原理

  1. 基于神经科学理论定义能量函数
    • 在视觉神经科学中,最具信息量的神经元通常是那些与周围神经元具有不同激发模式的神经元。并且,一个活跃的神经元可能会抑制周围神经元的活动,这种现象被称为空间抑制
    • 基于此,SimAM为每个神经元定义了如下能量函数:$e{t}\left(w{t}, b{t}, y, x{i}\right)=\left(y{t}-\hat{t}\right)^{2}+\frac{1}{M - 1} \sum{i = 1}^{M - 1}\left(y{o}-\hat{x}{i}\right)^{2}$,其中$\hat{t}=w{t}t + b{t}$和$\hat{x}{i}=w{t}x{i}+b{t}$是线性变换,$t$和$x{i}$是输入特征$X\in R^{C\times H\times W}$单个通道中的目标神经元和其他神经元。$i$是空间维度上的索引,$M = H\times W$是该通道上的神经元数量。$w{t}$和$b_{t}$是线性变换的权重和偏置。
    • 为了简化计算,采用二进制标签(即 1 和 -1)用于$y{t}$和$y{o}$,并添加一个正则项,最终的能量函数为:
      $e{t}\left(w{t}, b{t}, y, x{i}\right)=\frac{1}{M - 1} \sum{i = 1}^{M - 1}\left(-1-\left(w{t}x{i}+b{t}\right)\right)^{2}+\left(1-\left(w{t}t+b{t}\right)\right)^{2}+\lambda w_{t}^{2}$。
  2. 推导能量函数的闭式解
    • 通过对上述能量函数求解,得到关于$w{t}$和$b{t}$的闭式解为:$w{t}=-\frac{2\left(t-\mu{t}\right)}{\left(t-\mu{t}\right)^{2}+2\sigma{t}^{2}+2\lambda}$,$b{t}=-\frac{1}{2}\left(t+\mu{t}\right)w{t}$。其中$\mu{t}=\frac{1}{M - 1}\sum{i}x{i}$和$\sigma{t}=\sqrt{\frac{1}{M - 1}\sum{i}\left(x{i}-\mu{t}\right)^{2}}$是该通道上除(t)以外所有神经元的均值和方差。
    • 由于上述解是在单个通道上得到的,假设单个通道中的所有像素遵循相同的分布,那么可以对所有神经元计算一次均值和方差,并在该通道上重复使用,得到最小能量计算公式:$e{t}^{*}=\frac{4\left(\hat{\sigma}^{2}+\lambda\right)}{(t-\hat{\mu})^{2}+2\hat{\sigma}^{2}+2\lambda}$,其中$\hat{\mu}=\frac{1}{M}\sum{i}x{i}$和$\hat{\sigma}^{2}=\frac{1}{M}\sum{i}\left(x_{i}-\hat{\mu}\right)^{2}$。
    • 能量$e{t}^{*}$越低,神经元$t$与周围神经元的区别就越大,在视觉处理中就越重要。因此,每个神经元的重要性可以通过$1/e{t}^{*}$获得。
  3. 注意力模块的特征细化
    • 根据哺乳动物大脑中的注意力调制通常表现为对神经元响应的增益效应,SimAM使用缩放运算符而不是加法来进行特征细化。整个模块的细化阶段公式为:$\tilde{X}=\text{sigmoid}\left(\frac{1}{E}\right)\odot X$,其$E$是所有通道和空间维度上的$e_{t}^{*}$的集合,$\text{sigmoid}$函数用于限制$E$中的值过大,它是一个单调函数,不会影响每个神经元的相对重要性。

在这里插入图片描述

2.2、优势

  1. 全三维注意力权重
    • 与现有的注意力模块不同,SimAM可以直接推断出全三维注意力权重,同时考虑空间和通道维度,而不是只沿通道或空间维度生成一维或二维权重。这使得网络能够学习到更具判别性的特征,更好地捕捉图像中的有价值线索,与图像标签更加一致。
  2. 基于神经科学理论,可解释性强
    • SimAM基于神经科学理论设计,其实现注意力的方式是估计单个神经元的重要性,这种方法来源于对哺乳动物大脑中视觉处理机制的理解,具有较强的可解释性。相比其他大多基于启发式方法计算注意力权重的模块,SimAM更加科学合理。
  3. 参数自由
    • SimAM通过推导能量函数的闭式解,实现了无需向原始网络添加额外参数的特性。这在实际应用中具有很大的优势,轻量化,不会增加模型的复杂度和计算负担,同时能够有效地提升各种卷积神经网络在不同视觉任务中的表现。

论文:https://proceedings.mlr.press/v139/yang21o/yang21o.pdf
源码:https://github.com/ZjjConan/SimAM

三、实现代码及RT-DETR修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/144114720

目录
相关文章
|
10月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制
RT-DETR改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制
770 10
RT-DETR改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制
|
10月前
|
计算机视觉
RT-DETR改进策略【Neck】| PRCV 2023,SBA(Selective Boundary Aggregation):特征融合模块,描绘物体轮廓重新校准物体位置,解决边界模糊问题
RT-DETR改进策略【Neck】| PRCV 2023,SBA(Selective Boundary Aggregation):特征融合模块,描绘物体轮廓重新校准物体位置,解决边界模糊问题
602 20
RT-DETR改进策略【Neck】| PRCV 2023,SBA(Selective Boundary Aggregation):特征融合模块,描绘物体轮廓重新校准物体位置,解决边界模糊问题
|
10月前
|
机器学习/深度学习 PyTorch TensorFlow
RT-DETR改进策略【卷积层】| SPD-Conv 针对小目标和低分辨率图像的检测任务
RT-DETR改进策略【卷积层】| SPD-Conv 针对小目标和低分辨率图像的检测任务
552 11
RT-DETR改进策略【卷积层】| SPD-Conv 针对小目标和低分辨率图像的检测任务
|
10月前
|
机器学习/深度学习 计算机视觉 异构计算
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
365 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
|
10月前
|
编解码 计算机视觉
RT-DETR改进策略【Head】| 增加针对 大目标 的检测层 (四个检测头)
RT-DETR改进策略【Head】| 增加针对 大目标 的检测层 (四个检测头)
516 16
|
10月前
|
机器学习/深度学习 计算机视觉 网络架构
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
790 63
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
|
10月前
|
计算机视觉
RT-DETR改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题
RT-DETR改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题
368 17
RT-DETR改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题
|
10月前
|
机器学习/深度学习 编解码 数据可视化
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
674 11
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
|
10月前
|
机器学习/深度学习 数据可视化 网络架构
RT-DETR改进策略【SPPF】| NeuralPS-2022 Focal Modulation : 使用焦点调制模块优化空间金字塔池化SPPF
RT-DETR改进策略【SPPF】| NeuralPS-2022 Focal Modulation : 使用焦点调制模块优化空间金字塔池化SPPF
271 18
RT-DETR改进策略【SPPF】| NeuralPS-2022 Focal Modulation : 使用焦点调制模块优化空间金字塔池化SPPF
|
10月前
|
计算机视觉
YOLOv11改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能
YOLOv11改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能
416 9
YOLOv11改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能