RT-DETR改进策略【注意力机制篇】| 2023 MCAttention 多尺度交叉轴注意力 获取多尺度特征和全局上下文信息

简介: RT-DETR改进策略【注意力机制篇】| 2023 MCAttention 多尺度交叉轴注意力 获取多尺度特征和全局上下文信息

一、本文介绍

本文记录的是基于MCA注意力模块的RT-DETR目标检测改进方法研究。普通的轴向注意力难以实现长距离交互,不利于捕获分割任务中所需的空间结构或形状,而MCA注意力==模块通过构建了两个并行轴向注意力之间的交互,更有效地利用多尺度特征和全局上下文==,在改进RT-DETR的过程中,能够契合目标形态,更有效的获取目标的全局信息。


专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、MCANet原理

MCANet:基于多尺度交叉轴关注的医学图像分割

MCANet(Medical Image Segmentation with Multi - Scale Cross - Axis Attention)是一种用于医学图像分割的网络,其核心组件是多尺度交叉轴注意力(Multi - Scale Cross - Axis Attention,MCA)

2.1 MCA的原理:

  1. 回顾轴向注意力
    • 轴向注意力将自注意力分解为两个部分,分别负责沿水平或垂直维度计算自注意力,基于此,Axial - DeepLab可沿水平和垂直方向依次聚合特征,使捕获全局信息成为可能。
    • 轴向注意力比自注意力更高效,计算复杂度从$O(HW \times HW)$降低到$O(HW \times (H + W))$。
    • 但在许多医学图像分割任务中,数据集相对较小,轴向注意力难以实现长距离交互,不利于捕获分割任务中所需的空间结构或形状。
  2. 多尺度交叉轴注意力
    • MCA结构分为两个并行分支,分别计算水平和垂直轴向注意力,每个分支由三个不同核大小的1D卷积组成,用于沿一个空间维度编码多尺度上下文信息,随后通过交叉轴注意力沿另一个空间维度聚合特征。
    • 以顶部分支为例,给定特征图$F$(编码器最后三个阶段特征图的组合),使用三个并行的1D卷积对其进行编码,输出通过求和融合并送入一个$1\times1$卷积,公式为$F{x} = Conv{1\times1}\left(\sum{i = 0}^{2}Conv1D{i}^{x}(Norm(F))\right)$,其中$Conv1D{i}^{x}(\cdot)$表示沿$x$轴维度的1D卷积,$Norm(\cdot)$是层归一化,$F{x}$是输出。对于1D卷积的核大小,设置为$1\times7$、$1\times11$和$1\times21$。底部分支的输出$F_{y}$可通过类似方式得到。
    • 对于顶部分支的$F{x}$,将其送入$y$轴注意力,为更好地利用来自两个空间方向的多尺度卷积特征,计算$F{x}$和$F{y}$之间的交叉注意力,具体将$F{x}$作为键和值矩阵,$F{y}$作为查询矩阵,计算过程为$F{T} = MHCA{y}(F{y}, F{x}, F{x})$,其中$MHCA{y}(\cdot, \cdot, \cdot)$表示沿$x$轴的多头交叉注意力。底部分支以类似方式编码沿$y$轴方向的上下文,即$F{B} = MHCA{x}(F{x}, F{y}, F{y})$,其中$MHCA_{x}(\cdot, \cdot, \cdot)$表示沿$y$轴的多头交叉注意力。
    • MCA的输出为$F{out} = Conv{1\times1}(F{T}) + Conv{1\times1}(F_{B}) + F$。

在这里插入图片描述

2.2 MCA的优势:

  1. 引入轻量级多尺度卷积:处理病变区域或器官各种大小和形状的有效方式。
  2. 创新的注意力机制:与大多数以前的工作不同,MCA不直接应用轴向注意力来捕获全局上下文,而是构建两个并行轴向注意力之间的交互,更有效地利用多尺度特征和全局上下文。
  3. 解码器轻量级:微小型号的模型参数数量仅为$0.14M$,更适合实际应用场景。

论文:https://arxiv.org/pdf/2312.08866v1
源码:https://github.com/haoshao-nku/medical_seg

三、实现代码及RT-DETR修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/144114802

目录
相关文章
|
7月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【模型轻量化】| GhostNetV2:利用远距离注意力增强廉价操作
RT-DETR改进策略【模型轻量化】| GhostNetV2:利用远距离注意力增强廉价操作
226 63
RT-DETR改进策略【模型轻量化】| GhostNetV2:利用远距离注意力增强廉价操作
|
7月前
|
关系型数据库 决策智能
RT-DETR改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题
RT-DETR改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题
349 3
RT-DETR改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题
|
7月前
|
机器学习/深度学习 存储 TensorFlow
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
1721 11
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
|
7月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
268 10
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
|
7月前
|
计算机视觉 Perl
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
195 10
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
|
7月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
258 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
7月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【损失函数篇】| WIoU v3:针对低质量样本的边界框回归损失函数
RT-DETR改进策略【损失函数篇】| WIoU v3:针对低质量样本的边界框回归损失函数
299 14
|
7月前
|
计算机视觉 Perl
YOLOv11改进策略【卷积层】| CVPR-2024 PKI Module 获取多尺度纹理特征,适应尺度变化大的目标
YOLOv11改进策略【卷积层】| CVPR-2024 PKI Module 获取多尺度纹理特征,适应尺度变化大的目标
242 0
YOLOv11改进策略【卷积层】| CVPR-2024 PKI Module 获取多尺度纹理特征,适应尺度变化大的目标
|
7月前
|
知识图谱
RT-DETR改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新AIFI)
RT-DETR改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新AIFI)
208 12
RT-DETR改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新AIFI)
|
7月前
|
机器学习/深度学习 资源调度 计算机视觉
RT-DETR改进策略【Conv和Transformer】| CVPR-2022 Deformable Attention Transformer 可变形注意力 动态关注目标区域
RT-DETR改进策略【Conv和Transformer】| CVPR-2022 Deformable Attention Transformer 可变形注意力 动态关注目标区域
349 15
RT-DETR改进策略【Conv和Transformer】| CVPR-2022 Deformable Attention Transformer 可变形注意力 动态关注目标区域

热门文章

最新文章