YOLOv11改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率

简介: YOLOv11改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率

一、本文介绍

本文记录的是基于Mobile MQA模块的YOLOv11目标检测改进方法研究MobileNetv4中的Mobile MQA模块是用于模型加速,减少内存访问的模块,相比其他全局的自注意力,==其不仅加强了模型对全局信息的关注,同时也显著提高了模型效率。==


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、Mobile MQA注意力原理

在论文《MobileNetV4 - Universal Models for the Mobile Ecosystem》中,提出了Mobile MQA

一、原理

  1. 基于MQA改进并结合不对称空间下采样
    • MQA(Multi-Query Attention)简化了传统的多头注意力机制,通过共享keysvalues来减少内存访问需求。在移动混合模型中,当批量大小较小时,这种方式能有效提高运算强度。
    • 借鉴MQA中对querieskeysvalues的不对称计算方式,Mobile MQA引入了空间缩减注意力(SRA),对keysvalues进行下采样,同时保持高分辨率的queries。这是因为在混合模型中,早期层的空间混合卷积滤波器使得空间上相邻的标记具有相关性。
    • Mobile MQA的计算公式为:
      $$Mobile\_MQA(X)= Concat(attention_1,...,attention_n)W^{O}$$
      其中$attention_j = softmax(\frac{(XW^{Q_j})(SR(X)W^{K})^{T}}{\sqrt{d_k}})(SR(X)W^{V})$,这里SR可以是空间缩减操作(在设计中是一个步长为2的3x3深度卷积),也可以是恒等函数(当不进行空间缩减时)。

二、特点

  1. 针对加速器优化:专门为移动加速器进行了优化,考虑了移动加速器的计算和内存特性。
  2. 不对称空间下采样:通过对keysvalues进行下采样,保持queries的高分辨率,在不损失太多精度的情况下,显著提高了效率。
  3. 操作简单高效:相比传统的注意力机制,Mobile MQA的设计更加简单,操作更加高效,更适合在移动设备上运行。

论文:http://arxiv.org/abs/2404.10518
源码:https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/143569427

目录
相关文章
|
7月前
|
机器学习/深度学习 编解码 测试技术
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
630 8
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
|
7月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
RT-DETR改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率
RT-DETR改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率
192 2
|
7月前
|
机器学习/深度学习 数据可视化 算法
YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
1358 6
YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
|
7月前
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
420 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
|
7月前
|
机器学习/深度学习 存储 TensorFlow
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
1730 11
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
|
7月前
|
机器学习/深度学习 算法 文件存储
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
551 10
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
|
7月前
|
机器学习/深度学习
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
602 8
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
|
7月前
|
机器学习/深度学习 编解码 BI
YOLOv11改进策略【Conv和Transformer】| CVPR-2023 BiFormer 稀疏自注意力,减少内存占用
YOLOv11改进策略【Conv和Transformer】| CVPR-2023 BiFormer 稀疏自注意力,减少内存占用
291 3
YOLOv11改进策略【Conv和Transformer】| CVPR-2023 BiFormer 稀疏自注意力,减少内存占用
|
7月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
YOLOv11改进策略【卷积层】| 利用MobileNetv4中的UIB、ExtraDW优化C3k2
YOLOv11改进策略【卷积层】| 利用MobileNetv4中的UIB、ExtraDW优化C3k2
494 0
YOLOv11改进策略【卷积层】| 利用MobileNetv4中的UIB、ExtraDW优化C3k2
|
7月前
|
机器学习/深度学习 资源调度 算法
YOLOv11改进策略【损失函数篇】| 引入Soft-NMS,提升密集遮挡场景检测精度,包括GIoU-NMS、DIoU-NMS、CIoU-NMS、SIoU-NMS、 EIou-NMS
YOLOv11改进策略【损失函数篇】| 引入Soft-NMS,提升密集遮挡场景检测精度,包括GIoU-NMS、DIoU-NMS、CIoU-NMS、SIoU-NMS、 EIou-NMS
3032 6