SRMT:一种融合共享记忆与稀疏注意力的多智能体强化学习框架

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 自反射记忆Transformer (SRMT) 是一种面向多智能体系统的记忆增强型Transformer模型,通过共享循环记忆结构和自注意力机制,优化多智能体间的协同效率与决策能力。SRMT在复杂动态环境中展现出显著优势,特别是在路径规划等任务中。实验结果表明,SRMT在记忆维持、协同成功率及策略收敛速度等方面全面超越传统模型,具备广泛的应用前景。

人工智能(AI)强化学习(RL)领域的发展进程中,长期记忆维持和决策优化一直是核心技术难点。传统强化学习模型在经验回溯方面存在局限性,这显著制约了其在复杂动态环境中的应用效果。自反射记忆Transformer (SRMT)作为一种新型记忆增强型transformer架构,专注于提升基于AI的决策能力和多智能体协同效果。

本研究将系统阐述SRMT的技术架构、核心功能、应用场景及实验数据,深入分析其在多智能体强化学习(MARL)领域的技术优势。

SRMT技术架构概述

SRMT是一种面向多智能体系统记忆增强型transformer模型。该模型通过实现高效的记忆共享机制,使智能体能够进行经验存储、检索和反馈分析,从而在传统的transformer与强化学习架构基础上实现了技术突破。

SRMT核心技术特征:

  • 共享循环记忆结构:实现智能体间的隐式知识传递,提升协同效率
  • 自注意力与交叉注意力机制:优化历史信息与实时数据的融合处理
  • 架构可扩展性:支持单智能体到多智能体环境的无缝迁移
  • 决策能力优化:基于历史经验实现策略优化与理性决策
  • 动态环境适应性:在复杂导航规划等任务中展现出显著优势

SRMT技术实现机制

1、智能体策略模块

  • 空间特征编码器:执行输入数据的特征提取
  • 核心运算模块:采用Actor-Critic框架优化学习策略
  • 动作解码器:生成动作空间概率分布

2、记忆处理机制

  • 记忆单元:负责经验数据的存储与更新
  • 交叉注意力模块:优化记忆信息检索效率
  • 自注意力模块:对历史关键事件进行决策权重分配

3、双层记忆架构

  • 独立记忆单元:维护单个智能体的专属记忆空间
  • 共享记忆池:支持多智能体间的协同学习机制

实验环境配置

实验环境包含多样化场景,涵盖迷宫结构与路径规划任务。

密集奖励条件下的扩展性验证

在长度达1000单位的复杂走廊环境中,SRMT智能体表现出优秀的泛化能力,在稀疏奖励和负奖励场景下均保持稳定性能。

研究团队在密集奖励的走廊导航任务中对SRMT进行了系统评估,智能体能够获取持续反馈信号。通过对记忆保持与即时决策的动态平衡,该模型始终保持领先性能。实验结果验证了SRMT在复杂环境中学习最优策略的能力。

性能评估与对比分析

不同环境下系统吞吐量对比分析,验证SRMT相较于基准模型的效率优势。

研究团队将SRMT与传统的RNN、Transformer及混合记忆模型在多种多智能体强化学习环境中进行了对比测试。数据表明SRMT在以下指标上全面超越基准水平

  • 记忆维持效率
  • 多智能体协同成功率
  • 策略收敛速度
  • 动态任务决策稳定性

SRMT技术创新价值和未来研究方向

  • 自适应学习能力:实现实时学习与环境适应
  • 系统扩展性:支持不同规模智能体系统的高效运行
  • 长期记忆性能:保证关键信息的持久保存
  • 计算资源优化:实现快速高效的数据处理

基于SRMT在AI决策领域的技术优势,未来研究可重点关注:

  • 混合元学习技术的应用
  • 深度模仿学习的系统集成
  • 自主系统与机器人领域的实践应用

总结

自反射记忆Transformer (SRMT)多智能体强化学习领域实现了关键技术突破。通过共享循环记忆与transformer处理机制的创新集成,有效提升了系统的决策能力、扩展性与适应性。该技术在机器人控制、AI仿真及自主系统等领域具有广泛的应用前景,为新一代智能模型的发展提供了重要参考。

论文:

https://avoid.overfit.cn/post/90a799fb8a784b6dbc997e46936faf7f

作者:Oliver Matthews

目录
相关文章
|
10月前
|
人工智能 算法
生成模型不适合处理视频,AI得在抽象空间中进行预测
生成模型不适合处理视频,AI得在抽象空间中进行预测
305 2
生成模型不适合处理视频,AI得在抽象空间中进行预测
|
10月前
|
存储 人工智能 自然语言处理
|
1月前
|
机器学习/深度学习 算法 PyTorch
DeepSeek 背后的技术:GRPO,基于群组采样的高效大语言模型强化学习训练方法详解
强化学习(RL)是提升大型语言模型(LLM)推理能力的重要手段,尤其在复杂推理任务中表现突出。DeepSeek团队通过群组相对策略优化(GRPO)方法,在DeepSeek-Math和DeepSeek-R1模型中取得了突破性成果,显著增强了数学推理和问题解决能力。GRPO无需价值网络,采用群组采样和相对优势估计,有效解决了传统RL应用于语言模型时的挑战,提升了训练效率和稳定性。实际应用中,DeepSeek-Math和DeepSeek-R1分别在数学推理和复杂推理任务中展现了卓越性能。未来研究将聚焦于改进优势估计、自适应超参数调整及理论分析,进一步拓展语言模型的能力边界。
301 8
DeepSeek 背后的技术:GRPO,基于群组采样的高效大语言模型强化学习训练方法详解
|
3月前
|
机器学习/深度学习 算法 PyTorch
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
本文探讨了图神经网络(GNN)与大型语言模型(LLM)结合在知识图谱问答中的应用。研究首先基于G-Retriever构建了探索性模型,然后深入分析了GNN-RAG架构,通过敏感性研究和架构改进,显著提升了模型的推理能力和答案质量。实验结果表明,改进后的模型在多个评估指标上取得了显著提升,特别是在精确率和召回率方面。最后,文章提出了反思机制和教师网络的概念,进一步增强了模型的推理能力。
141 4
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
|
5月前
|
机器学习/深度学习 编解码 负载均衡
MoH:融合混合专家机制的高效多头注意力模型及其在视觉语言任务中的应用
本文提出了一种名为混合头注意力(MoH)的新架构,旨在提高Transformer模型中注意力机制的效率。MoH通过动态注意力头路由机制,使每个token能够自适应选择合适的注意力头,从而在减少激活头数量的同时保持或提升模型性能。实验结果显示,MoH在图像分类、类条件图像生成和大语言模型等多个任务中均表现出色,尤其在减少计算资源消耗方面有显著优势。
137 1
|
5月前
|
机器学习/深度学习 算法 数据挖掘
稀疏促进动态模态分解(SPDMD)详细介绍以及应用
稀疏促进动态模态分解(SPDMD)结合了动态模态分解(DMD)的数学优雅性和稀疏优化技术,有效提取高维数据中的关键特征。SPDMD通过稀疏约束自动筛选出最重要模态,去除冗余信息,提升模型的可解释性和计算效率。该方法在流体动力学、图像处理、时间序列分析及金融数据等领域广泛应用,能够识别主要趋势、周期性模式及异常现象。SPDMD不仅提高了数据分析效率,还为各领域研究提供了强有力的工具。通过自动选择最相关的模态,SPDMD尤其适用于大规模数据集和实时应用。
162 4
|
10月前
|
存储 机器学习/深度学习 人工智能
AIGC训练场景下的存储特征研究
在今天这样以AIGC为代表的AI时代下,了解训练场景对于存储的具体诉求同样是至关重要的。本文将尝试解读WEKA的一个相关报告,来看看AIGC对于存储有哪些具体的性能要求。
95197 8
|
8月前
|
机器学习/深度学习 自然语言处理 前端开发
大模型问题之神经语言模型与大模型的关系是什么
大模型问题之神经语言模型与大模型的关系是什么
|
10月前
|
机器学习/深度学习 人工智能
论文介绍:PreFLMR——扩展细粒度晚期交互多模态检索器以提升知识视觉问答性能
【5月更文挑战第3天】PreFLMR是扩展的细粒度晚期交互多模态检索器,用于提升知识视觉问答(KB-VQA)性能。基于FLMR,PreFLMR结合大型语言模型和检索增强生成,增强准确性与效率。通过M2KR框架全面评估,PreFLMR展示出色性能,尤其在E-VQA和Infoseek等任务。然而,其在预训练阶段未充分训练知识密集型任务,且仍有优化训练方法和数据集混合比例的空间。[论文链接](https://arxiv.org/abs/2402.08327)
273 1
|
10月前
|
自然语言处理 算法
强化上下文修剪提升LLM推理能力
强化上下文修剪提升LLM推理能力
137 1